PT - JOURNAL ARTICLE AU - James R. J. Haycocks AU - Gemma Z. L. Warren AU - Lucas M. Walker AU - Jennifer L. Chlebek AU - Triana N. Dalia AU - Ankur B. Dalia AU - David C. Grainger TI - The quorum sensing transcription factor AphA directly regulates natural competence in <em>Vibrio cholerae</em> AID - 10.1101/732818 DP - 2019 Jan 01 TA - bioRxiv PG - 732818 4099 - http://biorxiv.org/content/early/2019/08/12/732818.short 4100 - http://biorxiv.org/content/early/2019/08/12/732818.full AB - Many bacteria use population density to control gene expression via quorum sensing. In Vibrio cholerae, quorum sensing coordinates virulence, biofilm formation, and DNA uptake by natural competence. The transcription factors AphA and HapR, expressed at low- and high-cell density respectively, play a key role. In particular, AphA triggers the entire virulence cascade upon host colonisation. In this work we have mapped genome-wide DNA binding by AphA. We show that AphA is versatile, exhibiting distinct modes of DNA binding and promoter regulation. Unexpectedly, whilst HapR is known to induce natural competence, we demonstrate that AphA also intervenes. Most notably, AphA is a direct repressor of tfoX, the master activator of competence. Hence, production of AphA markedly suppressed DNA uptake; an effect largely circumvented by ectopic expression of tfoX. Our observations suggest dual regulation of competence. At low cell density AphA is a master repressor whilst HapR activates the process at high cell density. Thus, we provide deep mechanistic insight into the role of AphA and highlight how V. cholerae utilises this regulator for diverse purposes.AUTHOR SUMMARY Cholera remains a devastating diarrhoeal disease responsible for millions of cases, thousands of deaths, and a $3 billion financial burden every year. Although notorious for causing human disease, the microorganism responsible for cholera is predominantly a resident of aquatic environments. Here, the organism survives in densely packed communities on the surfaces of crustaceans. Remarkably, in this situation, the microbe can feast on neighbouring cells and acquire their DNA. This provides a useful food source and an opportunity to obtain new genetic information. In this paper, we have investigated how acquisition of DNA from the local environment is regulated. We show that a “switch” within the microbial cell, known to activate disease processes in the human host, also controls DNA uptake. Our results explain why DNA scavenging only occurs in suitable environments and illustrates how interactions between common regulatory switches affords precise control of microbial behaviours.