RT Journal Article SR Electronic T1 A Canal-Associated Neuron cAMP signalling pathway that regulates C. elegans larval development JF bioRxiv FD Cold Spring Harbor Laboratory SP 733618 DO 10.1101/733618 A1 Jason Chien A1 Fred W. Wolf A1 Sarah Grosche A1 Nebeyu Yosef A1 Gian Garriga A1 Catarina Mörck YR 2019 UL http://biorxiv.org/content/early/2019/08/14/733618.abstract AB Caenorhabditis elegans larval development requires the function of the two Canal-Associated Neurons (CANs): killing the CANs by laser microsurgery or disrupting their development by mutating the gene ceh-10 results in early larval arrest. How these cells promote larval development, however, remains a mystery. In screens for mutations that bypass CAN function, we identified the gene kin-29, which encodes a member of the Salt-Inducible Kinase (SIK) family and a component of a conserved pathway that regulates various C. elegans phenotypes. Like kin-29 loss, gain-of-function mutations in genes that may act upstream of kin-29 or growth in cyclic-AMP analogs bypassed ceh-10 larval arrest, suggesting that a conserved adenylyl cyclase/PKA pathway inhibits KIN-29 to promote larval development and that loss of CAN function results in dysregulation of KIN-29 and larval arrest. The adenylyl cyclase ACY-2 mediates CAN-dependent larval development: acy-2 mutant larvae arrested development with a similar phenotype to ceh-10 mutants, and the arrest phenotype was suppressed by mutations in kin-29. ACY-2 is predominantly expressed in the CANs, and we provide evidence that the acy-2 functions in the CANs to promote larval development. By contrast, cell-specific expression experiments suggest that kin-29 acts in both the hypodermis and neurons, but not in the CANs. Based on our findings, we propose that cAMP produced by ACY-2 in the CANs acts in neighboring neurons and hypodermal cells where it activates PKA and inhibits KIN-29 to promote larval development. We discuss how this conserved pathway could be partitioned between two cells.