PT - JOURNAL ARTICLE AU - Lam T. Nguyen AU - Catherine M. Oikonomou AU - Grant J. Jensen TI - Simulations of proposed mechanisms of FtsZ-driven cell constriction AID - 10.1101/737189 DP - 2019 Jan 01 TA - bioRxiv PG - 737189 4099 - http://biorxiv.org/content/early/2019/08/15/737189.short 4100 - http://biorxiv.org/content/early/2019/08/15/737189.full AB - To divide, bacteria must constrict their membranes against significant force from turgor pressure. A tubulin homo-log, FtsZ, is thought to drive constriction, but how FtsZ filaments might generate constrictive force in the absence of motor proteins is not well understood. There are two predominant models in the field. In one, filaments overlap to form complete rings around the circumference of the cell; as filaments slide against each other to maximize lateral contact, the rings constrict. In the other, filaments exert force on the membrane by a GTP-hydrolysis-induced switch in conformation from straight to bent. Here we developed software, ZCONSTRICT, for quantitative 3D simulations of Gram-negative bacterial cell division to test these two models and identify critical conditions required for them to work. We find that the avidity of lateral interactions quickly halts the sliding of filaments, so a mechanism such as depolymerization or treadmilling is required to sustain constriction by filament sliding. For filament bending, we find that a mechanism such as the presence of a rigid linker is required to constrain bending within the division plane and maintain the distance observed in vivo between the filaments and the membrane. We also explored the recent observation of constriction associated with a single FtsZ filament and found that it can be explained by the filament bending model if there is a rigid connection between the filament and the cell wall. Together, our work sheds light on the physical principles underlying bacterial cell division and informs future experiments to elucidate the mechanism of FtsZ.