RT Journal Article SR Electronic T1 Dysfunctional and compensatory brain networks underlying math fluency JF bioRxiv FD Cold Spring Harbor Laboratory SP 752089 DO 10.1101/752089 A1 Michelle AN La A1 Debjani Saha A1 Karen F Berman A1 Hao Yang Tan YR 2019 UL http://biorxiv.org/content/early/2019/09/02/752089.abstract AB Poor math fluency, or timed calculation (TC) performance, is a characteristic of dyscalculia, a common cause of poor educational and occupational outcomes. Here, we examined neural substrates of dysfunctional math fluency and potential compensatory mechanisms. We performed functional MRI scans of participants with divergent performance on an event-related TC paradigm (poor TC, <0.5 accuracy, n=34; vs. controls, accuracy>0.8, n=34). Individuals with poor TC had decreased intraparietal sulcus (IPS) engagement, and decreased IPS-striatal and IPS-prefrontal effective connectivity. We next examined an independent well-performing sample (TC accuracy>0.8, n=100), stratified according to relatively low-versus high-IPS activation during TC. Relatively reduced IPS engagement, or patterns of IPS-related effective connectivity similar to those with poor TC, appeared to be compensated for by increased engagement of effective connectivity involving fusiform gyrus, angular gyrus, inferior frontal gyrus and striatum. Neural connectivity involving high-level visual processing in fusiform gyrus and related ventral cortical networks may be relevant in compensatory function ameliorating aspects of dyscalculia and mathematical difficulty.