PT - JOURNAL ARTICLE AU - Alexis Riché AU - Linnka Lefebvre-Legendre AU - Michel Goldschmidt-Clermont TI - A key role for phosphorylation of PsbH in the biogenesis and repair of photosystem II in Chlamydomonas AID - 10.1101/754721 DP - 2019 Jan 01 TA - bioRxiv PG - 754721 4099 - http://biorxiv.org/content/early/2019/09/03/754721.short 4100 - http://biorxiv.org/content/early/2019/09/03/754721.full AB - Phosphorylation of the core subunits of photosystem II (PSII) is largely governed by a protein kinase and an antagonistic protein phosphatase. In plants the respective mutants show alterations in the architecture of thylakoid membranes and in the repair of PSII after photo-inhibition. However the protein kinase targets several subunits of PSII, as well as other proteins. To specifically investigate the role of phosphorylation of the different PSII subunits, we used site-directed mutagenesis and chloroplast transformation in Chlamydomonas reinhardtii. Major, evolutionarily-conserved sites of phosphorylation in three components of PSII (CP43, D2 and PsbH) were mutated to replace the corresponding serine or threonine residues with alanine. The alanine substitution mutant of D2 had no apparent phenotype, while the mutant of CP43 presented a minor delay in recovery from photo-inhibition. Alanine substitutions of the phosphorylation sites in PsbH had significant effects on the accumulation of PSII or on its recovery from photo-inhibition. When mutations in two of the target subunits were combined through a second cycle of chloroplast transformation, the strongest phenotype was observed in the mutant lacking phosphorylation of both PsbH and CP43, which showed delayed recovery from photo-inhibition. Surprisingly this phenotype was reversed in the mutant defective for phosphorylation of all three subunits. Our analysis indicates a prominent role for the N-terminus of PsbH in the stable accumulation of PSII and of PsbH phosphorylation in its repair cycle.SIGNIFICANCE STATEMENT To specifically investigate the role of PSII phosphorylation, alanine-substitution mutants of the major phospho-sites in the subunits of PSII were generated individually or in combinations using chloroplast transformation. PSII assembly was defective in some of the PsbH mutants. PSII repair after photo-inhibition was delayed most strongly in the mutant lacking phosphorylation of both PsbC (CP43) and PsbH.