RT Journal Article SR Electronic T1 Reference glycan structure libraries of primary human cardiomyocytes and pluripotent stem cell-derived cardiomyocytes reveal cell-type and culture stage-specific glycan phenotypes JF bioRxiv FD Cold Spring Harbor Laboratory SP 753707 DO 10.1101/753707 A1 Christopher Ashwood A1 Matthew Waas A1 Ranjuna Weerasekera A1 Rebekah L. Gundry YR 2019 UL http://biorxiv.org/content/early/2019/09/05/753707.abstract AB Cell surface glycoproteins play critical roles in maintaining cardiac structure and function in health and disease and the glycan-moiety attached to the protein is critical for proper protein folding, stability and signaling. However, despite mounting evidence that glycan structures are key modulators of heart function and must be considered when developing cardiac biomarkers, we currently do not have a comprehensive view of the glycans present in the normal human heart. In the current study, we used porous graphitized carbon liquid chromatography interfaced with mass spectrometry (PGC-LC-MS) to generate glycan structure libraries for primary human heart tissue homogenate, cardiomyocytes (CM) enriched from human heart tissue, and human induced pluripotent stem cell derived CM (hiPSC-CM). Altogether, we established the first reference structure libraries of the cardiac glycome containing 265 N- and O-glycans. These data will benefit future functional glycomics studies by informing the genes, proteins and metabolites responsible for the end-result structures and the glycan isomer libraries defined in this study are necessary for interpretation of future intact glycopeptide data. The cell-type specific glycan differences observed here will support the generation of cell-type specific protein glycoform maps of the human heart, thereby promoting the development of cell type-specific targeting strategies. Moreover, by comparing primary CM to hiPSC-CM collected during 20-100 days of differentiation, dynamic changes in the glycan profile throughout in vitro differentiation and differences between primary and hiPSC-CM are revealed. These observations are an important complement to current genomic, transcriptomic, and proteomic profiling and reveal new considerations for the use and interpretation of hiPSC-CM models for studies of human development, disease, and drug testing. Finally, these data are expected to support future regenerative medicine efforts by informing targets for evaluating the immunogenic potential of hiPSC-CM and harnessing differences between immature, proliferative hiPSC-CM and adult primary CM.