PT - JOURNAL ARTICLE AU - Kevin H.-C. Wei AU - Aditya Mantha AU - Doris Bachtrog TI - The theory and practice of measuring broad-range recombination rate from marker selected pools AID - 10.1101/762575 DP - 2019 Jan 01 TA - bioRxiv PG - 762575 4099 - http://biorxiv.org/content/early/2019/09/08/762575.short 4100 - http://biorxiv.org/content/early/2019/09/08/762575.full AB - Recombination is the exchange of genetic material between homologous chromosomes via physical crossovers. Pioneered by T. H. Morgan and A. Sturtevant over a century ago, methods to estimate recombination rate and genetic distance require scoring large number of recombinant individuals between molecular or visible markers. While high throughput sequencing methods have allowed for genome wide crossover detection producing high resolution maps, such methods rely on large number of recombinants individually sequenced and are therefore difficult to scale. Here, we present a simple and scalable method to infer near chromosome-wide recombination rate from marker selected pools and the corresponding analytical software MarSuPial. Rather than genotyping individuals from recombinant backcrosses, we bulk sequence marker selected pools to infer the allele frequency decay around the selected locus; since the number of recombinant individuals increases proportionally to the genetic distance from the selected locus, the allele frequency across the chromosome can be used to estimate the genetic distance and recombination rate. We mathematically demonstrate the relationship between allele frequency attenuation, recombinant fraction, genetic distance, and recombination rate in marker selected pools. Based on available chromosome-wide recombination rate models of Drosophila, we simulated read counts and determined that nonlinear local regressions (LOESS) produce robust estimates despite the high noise inherent to sequencing data. To empirically validate this approach, we show that (single) marker selected pools closely recapitulate genetic distances inferred from scoring recombinants between double markers. We theoretically determine how secondary loci with viability impacts can modulate the allele frequency decay and how to account for such effects directly from the data. We generated the recombinant map of three wild derived strains which strongly correlates with previous genome-wide measurements. Interestingly, amidst extensive recombination rate variation, multiple regions of the genomes show elevated rates across all strains. Lastly, we apply this method to estimate chromosome-wide crossover interference. Altogether, we find that marker selected pools is a simple and cost effective method for broad recombination rate estimates. Although it does not identify instances of crossovers, it can generate near chromosome-wide recombination maps in as little as one or two libraries.