RT Journal Article SR Electronic T1 DCT4 - a new member of the dicarboxylate transporter family in C4 grasses JF bioRxiv FD Cold Spring Harbor Laboratory SP 762724 DO 10.1101/762724 A1 Sarit Weissmann A1 Pu Huang A1 Koki Furuyama A1 Madeline A. Wiechert A1 Mitsutaka Taniguchi A1 James C. Schnable A1 Thomas P. Brutnell A1 Todd C. Mockler YR 2019 UL http://biorxiv.org/content/early/2019/09/13/762724.abstract AB Malate transport shuttles atmospheric carbon into the Calvin-Benson cycle during NADP-ME C4 photosynthesis. Previous characterizations of several plant dicarboxylate transporters (DCT) showed that they efficiently exchange malate across membranes. Here we identify and characterize a previously unknown member of the DCT family, DCT4, in Sorghum bicolor. We show that SbDCT4 exchanges malate across membranes and its expression pattern is consistent with a role in malate transport during C4 photosynthesis. SbDCT4 is not syntenic to the characterized photosynthetic gene ZmDCT2, and an ortholog is not detectable in the maize reference genome. We found that the expression patterns of DCT family genes in the leaves of Z. mays, and S. bicolor varied by cell type. Our results suggest that sub-functionalization of members of the DCT family for the transport of malate into the bundle sheath (BS) plastids occurred during the process of independent recurrent evolution of C4 photosynthesis in grasses of the PACMAD clade. This study confirms the value of using both syntenic information and gene expression profiles to assign orthology in evolutionarily related genomes.