RT Journal Article SR Electronic T1 Diverse Mechanisms of Resistance in Carbapenem-Resistant Enterobacteriaceae at a Health Care System in Silicon Valley, California JF bioRxiv FD Cold Spring Harbor Laboratory SP 298513 DO 10.1101/298513 A1 Fiona Senchyna A1 Rajiv Gaur A1 Johanna Sandlund A1 Cynthia Truong A1 Guillaume Tremintin A1 Dietmar Küeltz A1 Carlos A. Gomez A1 Fiona B. Tamburini A1 Tessa Andermann A1 Ami Bhatt A1 Isabella Tickler A1 Nancy Watz A1 Indre Budvytiene A1 Gongyi Shi A1 Fred C. Tenover A1 Niaz Banaei YR 2018 UL http://biorxiv.org/content/early/2018/04/10/298513.abstract AB Carbapenem-resistant Enterobacteriaceae (CRE) are emerging as a major health threat in North America. The mechanism of resistance to carbapenems has therapeutic and public health implications. We comprehensively characterized the underlying mechanisms of carbapenem resistance in CRE isolates recovered between 2013 and 2016 at a health system in Northern California. Genotypic methods were used to detect carbapenemases and plasmid-encoded cephalosporinases, and mass spectrometry was used to quantify relative porin levels for OmpC and OmpF and their analogs. MICs for imipenem-relebactam, meropenem-vaborbactam, ceftazidime-avibactam, and ceftolozane-tazobactam were measured. Whole genome sequencing was used for strain typing. A carbapenemase gene encoding blaOXA-48 like, blaNDM, blaKPC, blaSME, blaIMP, and blaVIM was detected in 38.7% (24/62) of CRE isolates. Porin levels was down at least 2-fold in 91.9% (57/62) of isolates. Including carbapenemase genes and porin loss, the mechanism of resistance was identified in 95.2% (59/62) of CRE isolates. Of the carbapenemase gene-positive isolates, blaKPC -positive isolates were 100% susceptible to ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam; blaOXA-48 like-positive isolates were 100% susceptible to ceftazidime-avibactam; and blaSME-positive isolates were 100% susceptible to meropenem-vaborbactam and ceftolozane-tazobactam. 100% (38/38), 92.1% (35/38), 89.5% (34/38), and 31.6% (12/38) of carbapenemase gene-negative CRE isolates were susceptible to ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, and ceftolozane-tazobactam, respectively. None of the CRE strains were genetically identical. In conclusion, at this health system in Silicon Valley, carbapenemase-producing CRE occurred sporadically and were mediated by diverse mechanisms. Nucleic acid testing for blaOXA-48 like, blaNDM, blaKPC, blaIMP, and blaVIM was sufficient to distinguish between carbapenemase-producing and non-producing CRE and accurately predicted susceptibility to ceftazidime-avibactam, meropenem-vaborbactam and imipenem-relebactam.