PT - JOURNAL ARTICLE AU - Nachiket Vartak AU - Georgia Guenther AU - Florian Joly AU - Amruta Damle-Vartak AU - Gudrun Wibbelt AU - Jörns Fickel AU - Simone Jörs AU - Brigitte Begher-Tibbe AU - Adrian Friebel AU - Kasimir Wansing AU - Ahmed Ghallab AU - Marie Rosselin AU - Noemie Boissier AU - Irene Vignon-Clementel AU - Christian Hedberg AU - Fabian Geisler AU - Heribert Hofer AU - Peter Jansen AU - Stefan Hoehme AU - Dirk Drasdo AU - Jan G. Hengstler TI - Intravital multi-modal flux analysis reveals the transport mechanism of bile acids through hepatic microconduits AID - 10.1101/778803 DP - 2019 Jan 01 TA - bioRxiv PG - 778803 4099 - http://biorxiv.org/content/early/2019/09/26/778803.short 4100 - http://biorxiv.org/content/early/2019/09/26/778803.full AB - Small-molecule flux in tissue-microdomains is essential for organ function, but knowledge of this process is scant due to the lack of suitable methods applicable to live animals. We developed a methodology based on dynamic and correlative imaging for quantitative intravital flux analysis. Application to the liver, challenged the prevailing ‘mechano-osmotic’ theory of canalicular bile flow. After active transport across hepatocyte membranes bile salts are transported in the canaliculi primarily by diffusion. Only in the interlobular ducts, diffusion is augmented by regulatable advection. We corroborate these observations with in silico simulations and pan-species comparisons of lobule size. This study demonstrates a flux mechanism, where the energy invested in transmembrane transport entropically dissipates in a sub-micron scale vessel network.One Sentence Summary Bile flux proceeds by diffusion in canaliculi, augmented by advection in ducts.