RT Journal Article SR Electronic T1 A discontinuous Galerkin model for fluorescence loss in photobleaching of intracellular polyglutamine protein aggregates JF bioRxiv FD Cold Spring Harbor Laboratory SP 303107 DO 10.1101/303107 A1 Christian V Hansen A1 Hans J Schroll A1 Daniel Wüstner YR 2018 UL http://biorxiv.org/content/early/2018/04/17/303107.abstract AB Background Intracellular phase separation and aggregation of proteins with extended poly-glutamine (polyQ) stretches are hallmarks of various age-associated neurodegenerative diseases. Progress in our understanding of such processes heavily relies on quantitative fluorescence imaging of suitably tagged proteins. Fluorescence loss in photobleaching (FLIP) is particularly well-suited to study the dynamics of protein aggregation in cellular models of Chorea Huntington and other polyQ diseases, as FLIP gives access to the full spatio-temporal profile of intensity changes in the cell geometry. In contrast to other methods, also dim aggregates become visible during time evolution of fluorescence loss in cellular compartments. However, methods for computational analysis of FLIP data are sparse, and transport models for estimation of transport and diffusion parameters from experimental FLIP sequences are missing.Results In this paper, we present a computational method for analysis of FLIP imaging experiments of intracellular polyglutamine protein aggregates also called inclusion bodies (IBs). By this method, we are able to determine the diffusion constant and nuclear membrane permeability coefficients of polyQ proteins as well as the exchange rates between aggregates and the cytoplasm. Our method is based on a reaction-diffusion multi-compartment model defined on a mesh obtained by segmentation of the cell images from the FLIP sequence. The discontinuous Galerkin (DG) method is used for numerical implementation of our model in FEniCS, which greatly reduces the computing time. The method is applied to representative experimental FLIP sequences, and consistent estimates of all transport parameters are obtained.Conclusions By directly estimating the transport parameters from live-cell image sequences using our new computational FLIP approach surprisingly fast exchange dynamics of mutant Huntingtin between cytoplasm and dim IBs could be revealed. This is likely relevant also for other polyQ diseases. Thus, our method allows for quantifying protein dynamics at different stages of the protein aggregation process in cellular models of neurodegeneration.