TY - JOUR T1 - Transgenerational dispersal plasticity and its fitness consequences are under genetic control JF - bioRxiv DO - 10.1101/791210 SP - 791210 AU - Hugo Cayuela AU - Staffan Jacob AU - Nicolas Schtickzelle AU - Rik Verdonck AU - Hervé Philippe AU - Martin Laporte AU - Michèle Huet AU - Louis Bernatchez AU - Delphine Legrand Y1 - 2019/01/01 UR - http://biorxiv.org/content/early/2019/10/02/791210.abstract N2 - Phenotypic plasticity, the ability of one genotype to produce different phenotypes in different environments, plays a central role in species’ response to environmental changes. Transgenerational plasticity (TGP) allows the transmission of this environmentally-induced phenotypic variation across generations, and can influence adaptation. To date, the genetic control of TGP, its long-term stability, and its potential costs remain largely unknown, mostly because empirical demonstrations of TGP across many generations in several genetic backgrounds are scarce. Here, we examined how genotype determines the TGP of dispersal, a fundamental process in ecology and evolution. We used an experimental approach involving ~200 clonal generations in a model-species of ciliate to determine if and how TGP influences the expression of dispersal-related traits in several genotypes. Our results show that morphological and movement traits associated with dispersal are plastic, and that these modifications are inherited over at least 35 generations. We also highlight that genotype modulates the fitness costs and benefits associated with plastic dispersal strategies. Our study suggests that genotype-dependent TGP could play a critical role in eco-evolutionary dynamics as dispersal determines gene flow and the long-term persistence of natural populations. More generally, it outlines the tremendous importance that genotype-dependent TGP could have in the ability of organisms to cope with current and future environmental changes.Significance The genetic control of the transgenerational plasticity is still poorly understood despite its critical role in species responses to environmental changes. We examined how genotype determines transgenerational plasticity of a complex trait (i.e., dispersal) in a model-species of ciliate across ~200 clonal generations. Our results provide evidence that plastic phenotypic variation linked to dispersal is stably inherited over tens of generations and that cell genotype modulates the expression and fitness cost of transgenerational plasticity. ER -