PT - JOURNAL ARTICLE AU - Minze Zhang AU - Ludwig Krabben AU - Fangkun Wang AU - Michael Veit TI - Glycoprotein 3 of porcine reproductive and respiratory syndrome virus exhibits an unusual hairpin-like membrane topology AID - 10.1101/304337 DP - 2018 Jan 01 TA - bioRxiv PG - 304337 4099 - http://biorxiv.org/content/early/2018/04/19/304337.short 4100 - http://biorxiv.org/content/early/2018/04/19/304337.full AB - The glycoprotein GP3 of the Arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) consists of a cleaved signal peptide, a highly glycosylated domain, a short hydrophobic region and an unglycosylated C-terminal domain. GP3 is supposed to form a complex with GP2 and GP4 in virus particles, but secretion of GP3 from cells has also been reported.We analyzed the membrane topology of GP3 from various PRRSV strains. A fraction of the protein is secreted from transfected cells; GP3 from PRRSV-1 strains to a greater extent than GP3 from PRRSV-2 strains. This secretion behavior is reversed after exchange of the variable C-terminal domain. A fluorescence protease protection assay shows that the C-terminus of GP3, fused to GFP, is resistant against proteolytic digestion in permeabilized cells. Furthermore, glycosylation sites inserted into the C-terminal part of GP3 are used. Both experiments indicate that the C-terminus of GP3 is translocated into the lumen of the endoplasmic reticulum. Deletion of the conserved hydrophobic region greatly enhances secretion of GP3 and fusion of this domain to GFP promotes membrane anchorage. Bioinformatics suggests that the hydrophobic region might form an amphipathic helix. Accordingly, exchanging only a few amino acids in its hydrophilic face prevents and in its hydrophobic face enhances secretion of GP3. Exchanging the latter amino acids in the context of the viral genome did not affect release of virions, but released particles were not infectious. In sum, GP3 exhibits an unusual hairpin-like membrane topology that might explain why a fraction of the protein is secreted.IMPORTANCE The porcine reproductive and respiratory syndrome virus (PRRSV) is the most important pathogen in the pork industry. It causes persistent infections that lead to reduced weight gain of piglets; highly pathogenic strains even kill 90% of an infected pig population. PRRSV cannot be eliminated from pig farms by vaccination due to the large amino acid variability between the existing strains, especially in the glycoproteins. Here we analyzed basic structural features of glycoprotein 3 (GP3) from various PRRSV strains. We show that the protein exhibits an unusual hairpin-like membrane topology; membrane anchoring might occur via an amphipathic helix. This rather weak membrane anchor explains why a fraction of the protein is secreted from cells. Interestingly, PRRSV-1 strains secrete more GP3 than PRRSV-2. We speculate that secreted GP3 might play a role during PRRSV infection of pigs; it might serve as a decoy to distract antibodies away from virus particles.