PT - JOURNAL ARTICLE AU - Kristin Habermann AU - Bhavika Tiwari AU - Maria Krantz AU - Stephan O. Adler AU - Edda Klipp AU - M. Asif Arif AU - Wolfgang Frank TI - Impact of small RNAs in retrograde signalling pathways in <em>Arabidopsis thaliana</em> AID - 10.1101/798900 DP - 2019 Jan 01 TA - bioRxiv PG - 798900 4099 - http://biorxiv.org/content/early/2019/10/09/798900.short 4100 - http://biorxiv.org/content/early/2019/10/09/798900.full AB - Chloroplast perturbations activate retrograde signalling pathways causing dynamic changes of gene expression. Besides transcriptional control of gene expression different classes of small non-coding RNAs (sRNAs) act in gene expression control, but comprehensive analyses regarding their role in retrograde signalling is lacking. We performed sRNA profiling in response to norflurazon (NF) that provokes retrograde signals in A. thaliana wild type and the two retrograde signalling mutants gun1 and gun5. The RNA samples were also used for mRNA and long non-coding RNA (lncRNA) profiling to link altered sRNA levels to changes of their cognate target RNAs. We identified 122 sRNAs from all known sRNA classes that were responsive to NF in wild type. Strikingly, 140 and 213 sRNAs were found to be differentially regulated in both mutants indicating a retrograde control of these sRNAs. Concomitant with the changes in sRNA expression we detected about 1500 differentially expressed mRNAs in the NF treated wild type and around 900 and 1400 mRNAs that were differentially regulated in the gun1 and gun5 mutant with a high proportion (~30%) of genes encoding plastid proteins. Furthermore, around 20% of predicted miRNA targets code for plastid localised proteins. The analyses of sRNA-target pairs identified pairs with an anticorrelated expression as well pairs showing other expressional relations pointing to a role of sRNAs in balancing transcriptional changes upon retrograde signals. Based on the comprehensive changes in sRNA expression we assume a considerable impact of sRNAs in retrograde-dependent transcriptional changes to adjust plastidic and nuclear gene expression.Significance statement Perturbations of plastid functions trigger retrograde signalling to adjust plastidic and nuclear gene expression, however, the role of small non-coding RNAs acting as regulators in these pathways is not well understood. We analysed small non-coding RNA expression in response to retrograde signals in A. thaliana wild type and two retrograde signalling mutants and identified members of all known small non-coding RNA classes pointing to a functional role of these RNA classes in retrograde pathways.