TY - JOUR T1 - DNA Double Strand Break Repair in <em>E. coli</em> Perturbs Cell Division and Chromosome Dynamics JF - bioRxiv DO - 10.1101/802389 SP - 802389 AU - M.A. White AU - E. Darmon AU - M.A. Lopez-Vernaza AU - D.R.F. Leach Y1 - 2019/01/01 UR - http://biorxiv.org/content/early/2019/10/11/802389.abstract N2 - To prevent the transmission of damaged genomic material between generations, cells require a system for accommodating DNA repair within their cell cycles. We have previously shown that Escherichia coli cells subject to a single, repairable site-specific DNA double-strand break (DSB) per DNA replication cycle reach a new average cell length, with a negligible effect on population growth rate. We show here that this new cell size distribution is caused by a DSB repair-dependent delay in completion of cell division. This delay occurs despite unperturbed cell size regulated initiation of both chromosomal DNA replication and cell division. Furthermore, despite DSB repair altering the profile of DNA replication across the genome, the time required to complete chromosomal duplication is invariant. The delay in completion of cell division is accompanied by a DSB repair-dependent delay in individualization of sister nucleoids. We suggest that DSB repair events create inter-sister connections that persist until those chromosomes are separated by a closing septum.Author Summary The bacterium Escherichia coli has a remarkable cell cycle where overlapping rounds of DNA replication can occur in a single generation between cell birth and division. This implies a complex coordination network between growth, genome duplication and cell division to ensure that the right number of genomes are created and distributed to daughter cells at all growth rates. This network must be robust to a number of unpredictable challenges. One such challenge is broken DNA, something that in E. coli is estimated to occur in ~20% of cell division cycles. In this work we perturb the E. coli cell cycle by elevating the frequency of repairable DNA double-strand breaks to determine which parameters of the cell cycle are conserved and which are changed. Our results demonstrate that this perturbation does not alter the average cell size at initiation of DNA replication or initiation of cell division. Furthermore, it does not alter the time taken to replicate the genome or the generation time. However, it does delay the segregation of the DNA to daughter cells and the completion of cell division explaining the increase in average cell size observed previously. ER -