TY - JOUR T1 - Rutin, a Natural Inhibitor of IGPD Protein, Inhibits the Biofilm Formation in <em>Staphylococcus xylosus</em> ATCC700404 JF - bioRxiv DO - 10.1101/802447 SP - 802447 AU - God’spower Bello-Onaghise AU - Xing Xiaoxu AU - Zhou Yonghui AU - Qu Qianwei AU - Cui Wenqiang AU - Tang Yang AU - Chen Xingru AU - Wang Jinpeng AU - Yan-Hua Li Y1 - 2019/01/01 UR - http://biorxiv.org/content/early/2019/10/11/802447.abstract N2 - The biofilm of bacteria plays an important role in antibiotic resistance and chronic infection. Thus, in order to solve the problem of resistant bacteria, it is very important to find new drugs that can inhibit the formation of biofilms. In recent years, researchers have shifted their attention to natural products. As a flavonoid, rutin has been reported to have a variety of biological activities, interestingly, in this study, the inhibitory effect of rutin on the biofilm of Staphylococcus xylosus was investigated. We confirmed that rutin could effectively inhibit the biofilm formation of S. xylosus, then, for the sake of discussion on how it interferes with the biofilm formation, the interaction between rutin and imidazolyl phosphate dehydratase (IGPD) which has been identified as the key enzyme that plays a vital role in the process of biofilm formation was analyzed by molecular docking, the results showed that rutin had a strong affinity with IGPD, it occupied the hydrophobic cavity of the active center forming four hydrogen bonds and many other interactions. In addition, we proved that rutin was able to combine with IGPD using SPR technique. Therefore, we determined the enzyme activity and histidine content of IGPD, the result indicated that rutin could simultaneously inhibit the activity of IGPD and abrogate the synthesis of histidine. Interestingly, the hisB gene encoding for IGPD and IGPD in S. xylosus were also significantly inhibited when the bacterial culture was treated with rutin. Taken together, the results have provided evidence that rutin is a natural drug that has the ability to interfere with the formation of biofilm in S. xylosus. It is therefore a potential enzyme inhibitor of IGPD.Author’s Summary Staphylococcus xylosus has been isolated from a variety of infections, and the biofilm formed by S. xylosus can help the bacteria evade the immune system of the host and cause chronic infections. Here, we dealt with this menace by establishing a highly effective drug with the ability to interfere with the process involved in the formation of biofilm in S. xylosus. IGPD has been reported to be directly involved in the formation of biofilm in Staphylococcus xylosus and it is known to be present in a variety of microorganisms. Based on this study, we developed a drug therapy targeting IGPD and at the same time interfere with the formation of biofilm in S. xylosus ER -