RT Journal Article SR Electronic T1 Characterization of Arabidopsis thaliana promoter bidirectionality and antisense RNAs by depletion of nuclear RNA decay enzymes JF bioRxiv FD Cold Spring Harbor Laboratory SP 809194 DO 10.1101/809194 A1 Axel Thieffry A1 Jette Bornholdt A1 Maxim Ivanov A1 Peter Brodersen A1 Albin Sandelin YR 2019 UL http://biorxiv.org/content/early/2019/10/18/809194.abstract AB In animals, transcription by RNA polymerase II initiates bidirectionally from gene promoters to produce pre-mRNAs on the forward strand and promoter upstream transcripts (PROMPTs) on the reverse strand. PROMPTs are rapidly degraded by the nuclear exosome. Similarly, active enhancer regions in animals initiate transcription of exosome-sensitive enhancer RNAs (eRNAs). Previous studies based on nascent RNA approaches concluded that Arabidopsis thaliana does not produce PROMPTs. Here, we used steady-state RNA sequencing methods in mutants defective in nuclear RNA decay, including by the exosome, to reassess the existence of PROMPTs and eRNAs in A. thaliana. While PROMPTs are overall rare in A. thaliana, about 100 clear cases of exosome-sensitive PROMPTs and 113 loci producing eRNA-like transcripts were identified. In addition, we found ∼200 transcription start sites within 3’-UTR-encoding regions that produce unspliced exosome-sensitive antisense RNAs covering much of the cognate pre-mRNA. A typical representative of this class of RNAs is the previously characterized non-coding RNA controlling the expression of the key seed dormancy regulator, DELAY OF GERMINATION1. Exosome-sensitive antisense RNAs are overrepresented in transcription factor genes, suggesting a potential for widespread control of gene expression. Lastly, we assess the use of alternative promoters in A. thaliana and compare the accuracy of existing TSS annotations.