TY - JOUR T1 - Spatial Attention Enhances the Neural Representation of Invisible Signals Embedded in Noise JF - bioRxiv DO - 10.1101/102731 SP - 102731 AU - Cooper A. Smout AU - Jason B. Mattingley Y1 - 2018/01/01 UR - http://biorxiv.org/content/early/2018/04/30/102731.abstract N2 - Recent evidence suggests that voluntary spatial attention can affect neural processing of visual stimuli that do not enter conscious awareness (i.e. invisible stimuli), supporting the notion that attention and awareness are dissociable processes (Watanabe et al., 2011; Wyart, Dehaene, & Tallon-Baudry, 2012). To date, however, no study has demonstrated that these effects reflect enhancement of the neural representation of invisible stimuli per se, as opposed to other neural processes not specifically tied to the stimulus in question. In addition, it remains unclear whether spatial attention can modulate neural representations of invisible stimuli in direct competition with highly salient and visible stimuli. Here we developed a novel electroencephalography (EEG) frequency-tagging paradigm to obtain a continuous readout of human brain activity associated with visible and invisible signals embedded in dynamic noise. Participants (N = 23) detected occasional contrast changes in one of two flickering image streams on either side of fixation. Each image stream contained a visible or invisible signal embedded in every second noise image, the visibility of which was titrated and checked using a two-interval forced-choice detection task. Steady-state visual-evoked potentials (SSVEPs) were computed from EEG data at the signal and noise frequencies of interest. Cluster-based permutation analyses revealed significant neural responses to both visible and invisible signals across posterior scalp electrodes. Control analyses revealed that these responses did not reflect a subharmonic response to noise stimuli. In line with previous findings, spatial attention increased the neural representation of visible signals. Crucially, spatial attention also increased the neural representation of invisible signals. As such, the present results replicate and extend previous studies by demonstrating that attention can modulate the neural representation of invisible signals that are in direct competition with highly salient masking stimuli. ER -