PT - JOURNAL ARTICLE AU - Motoshi Hayano AU - Jae-Hyun Yang AU - Michael S. Bonkowski AU - Joao A. Amorim AU - Jaime M. Ross AU - Giuseppe Coppotelli AU - Patrick T. Griffin AU - Yap Ching Chew AU - Wei Guo AU - Xiaojing Yang AU - Daniel L. Vera AU - Elias L. Salfati AU - Abhirup Das AU - Sachin Thakur AU - Alice E. Kane AU - Sarah J. Mitchell AU - Yasuaki Mohri AU - Emi K. Nishimura AU - Laura Schaevitz AU - Neha Garg AU - Ana-Maria Balta AU - Meghan A. Rego AU - Meredith Gregory-Ksander AU - Tatjana C. Jakobs AU - Lei Zhong AU - Hiroko Wakimoto AU - Raul Mostoslavsky AU - Amy J. Wagers AU - Kazuo Tsubota AU - Stephen J. Bonasera AU - Carlos M. Palmeira AU - Jonathan G. Seidman AU - Christine E. Seidman AU - Norman S. Wolf AU - Jill A. Kreiling AU - John M. Sedivy AU - George F. Murphy AU - Philipp Oberdoerffer AU - Bruce R. Ksander AU - Luis A. Rajman AU - David A. Sinclair TI - DNA Break-Induced Epigenetic Drift as a Cause of Mammalian Aging AID - 10.1101/808659 DP - 2019 Jan 01 TA - bioRxiv PG - 808659 4099 - http://biorxiv.org/content/early/2019/10/21/808659.short 4100 - http://biorxiv.org/content/early/2019/10/21/808659.full AB - There are numerous hallmarks of aging in mammals, but no unifying cause has been identified. In budding yeast, aging is associated with a loss of epigenetic information that occurs in response to genome instability, particularly DNA double-strand breaks (DSBs). Mammals also undergo predictable epigenetic changes with age, including alterations to DNA methylation patterns that serve as epigenetic “age” clocks, but what drives these changes is not known. Using a transgenic mouse system called “ICE” (for inducible changes to the epigenome), we show that a tissue’s response to non-mutagenic DSBs reorganizes the epigenome and accelerates physiological, cognitive, and molecular changes normally seen in older mice, including advancement of the epigenetic clock. These findings implicate DSB-induced epigenetic drift as a conserved cause of aging from yeast to mammals.One Sentence Summary DNA breaks induce epigenomic changes that accelerate the aging clock in mammals