TY - JOUR T1 - Glioblastoma recurrence and the role of MGMT promoter methylation JF - bioRxiv DO - 10.1101/317636 SP - 317636 AU - Katie Storey AU - Kevin Leder AU - Andrea Hawkins-Daarud AU - Kristin Swanson AU - Atique U. Ahmed AU - Russell C. Rockne AU - Jasmine Foo Y1 - 2018/01/01 UR - http://biorxiv.org/content/early/2018/05/09/317636.abstract N2 - Tumor recurrence in glioblastoma multiforme (GBM) is often attributed to acquired resistance to the standard chemotherapeutic agent temozolomide (TMZ). Promoter methylation of the DNA repair gene MGMT has been associated with sensitivity to TMZ, while increased expression of MGMT has been associated with TMZ resistance. Clinical studies have observed a downward shift in MGMT methylation percentage from primary to recurrent stage tumors. However, the evolutionary processes driving this shift, and more generally the emergence and growth of TMZ-resistant tumor subpopulations, are still poorly understood. Here we develop a mathematical model, parameterized using clinical and experimental data, to investigate the role of MGMT methylation in TMZ resistance during the standard treatment regimen for GBM (surgery, chemotherapy and radiation). We first find that the observed downward shift in MGMT promoter methylation status between detection and recurrence cannot be explained solely by evolutionary selection. Next, our model suggests that TMZ has an inhibitory effect on maintenance methylation of MGMT after cell division. Finally, incorporating this inhibitory effect, we study the optimal number of TMZ doses per adjuvant cycle for GBM patients with high and low levels of MGMT methylation at diagnosis. ER -