PT - JOURNAL ARTICLE AU - John Wagner AU - Carine Fillebeen AU - Tina Haliotis AU - Jeannie Mui AU - Hojatollah Vali AU - Kostas Pantopoulos TI - Mouse models of hereditary hemochromatosis do not develop early liver fibrosis in response to a high fat diet AID - 10.1101/319442 DP - 2018 Jan 01 TA - bioRxiv PG - 319442 4099 - http://biorxiv.org/content/early/2018/05/10/319442.short 4100 - http://biorxiv.org/content/early/2018/05/10/319442.full AB - Hepatic iron overload, a hallmark of hereditary hemochromatosis (HH), triggers progressive liver disease. There is also increasing evidence for a pathogenic role of iron in non-alcoholic fatty liver disease (NAFLD), which may progress to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular cancer. Mouse models of HH and NAFLD can be used to explore potential interactions between iron and lipid metabolic pathways. Hfe−/− mice, a model of moderate iron overload, were reported to develop early liver fibrosis in response to a high fat diet. However, this was not the case with Hjv−/− mice, a model of severe iron overload. These data raised the possibility that the Hfe gene may protect against liver injury independently of its iron regulatory function. Herein, we addressed this hypothesis in a comparative study utilizing wild type, Hfe−/−, Hjv−/− and double Hfe−/−Hjv−/− mice. The animals, all in C57/BL6 background, were fed with a high fat diet for 14 weeks and developed hepatic steatosis, associated with mild iron overload. Hfe co-ablation did not sensitize steatotic Hjv-deficient mice to liver injury. Moreover, we did not observe any signs of liver inflammation or fibrosis even in single steatotic Hfe−/− mice. Ultrastructural studies revealed a reduced lipid and glycogen content in Hjv−/− hepatocytes, indicative of a metabolic defect. Interestingly, glycogen levels were restored in double Hfe−/−Hjv−/− mice, which is consistent with a metabolic function of Hfe. We conclude that hepatocellular iron excess does not aggravate diet-induced steatosis to steatohepatitis or early liver fibrosis in mouse models of HH, irrespectively of the presence or lack of Hfe.