RT Journal Article SR Electronic T1 BK current contributions to action potentials across the first postnatal week reflect age dependent changes in BK current kinetics in rat hippocampal neurons JF bioRxiv FD Cold Spring Harbor Laboratory SP 839233 DO 10.1101/839233 A1 Michael Hunsberger A1 Michelle Mynlieff YR 2019 UL http://biorxiv.org/content/early/2019/11/12/839233.abstract AB The large conductance calcium-activated potassium (BK) channel is a critical regulator of neuronal action potential firing and follows two distinct trends in early postnatal development: an increase in total expression and a shift from the faster activating STREX isoform to the slower ZERO isoform. We analyzed the functional consequences of developmental trends in BK channel expression in hippocampal neurons isolated from neonatal rats aged one to seven days. Following overnight cultures, action potentials were recorded using whole-cell patch clamp electrophysiology. This population of neurons undergoes a steady increase in excitability during this time and the effect of blockade of BK channel activity with 100 nM iberiotoxin, changes as the neurons mature. BK currents contribute significantly more to single action potentials in neurons of one-day old rats (with BK blockade extending action potential duration by 0.46±0.12 ms) than in those of seven-day old rats (with BK blockade extending action potential duration by 0.17±0.05 ms). BK currents also contribute consistently to maintain firing rates in neurons of one-day old rats throughout extended action potential firing; BK blockade evenly depresses action potentials frequency across action potential trains. In neurons from seven-day old rats, BK blockade initially increases firing frequency and then progressively decreases frequency as firing continues, ultimately depressing neuronal firing rates to a greater extent than in the neurons from one day old animals. These results are consistent with a transition from low expression of a fast activating BK isoform (STREX) to high expression of a slower activating isoform (ZERO).New and Noteworthy This work describes the early developmental trends of BK channel activity. Early developmental trends in expression of BK channels, both total expression and relative isoform expression, have been previously reported, but little work describes the effect of these changes in expression patterns on excitability. Here, we show that early changes in BK channel expression patterns lead to changes in the role of BK channels in determining the action potential waveform and neuronal excitability.