RT Journal Article SR Electronic T1 Variability in the analysis of a single neuroimaging dataset by many teams JF bioRxiv FD Cold Spring Harbor Laboratory SP 843193 DO 10.1101/843193 A1 Botvinik-Nezer, Rotem A1 Holzmeister, Felix A1 Camerer, Colin F. A1 Dreber, Anna A1 Huber, Juergen A1 Johannesson, Magnus A1 Kirchler, Michael A1 Iwanir, Roni A1 Mumford, Jeanette A. A1 Adcock, Alison A1 Avesani, Paolo A1 Baczkowski, Blazej A1 Bajracharya, Aahana A1 Bakst, Leah A1 Ball, Sheryl A1 Barilari, Marco A1 Bault, Nadège A1 Beaton, Derek A1 Beitner, Julia A1 Benoit, Roland A1 Berkers, Ruud A1 Bhanji, Jamil A1 Biswal, Bharat A1 Bobadilla-Suarez, Sebastian A1 Bortolini, Tiago A1 Bottenhorn, Katherine A1 Bowring, Alexander A1 Braem, Senne A1 Brooks, Hayley A1 Brudner, Emily A1 Calderon, Cristian A1 Camilleri, Julia A1 Castrellon, Jaime A1 Cecchetti, Luca A1 Cieslik, Edna A1 Cole, Zachary A1 Collignon, Olivier A1 Cox, Robert A1 Cunningham, William A1 Czoschke, Stefan A1 Dadi, Kamalaker A1 Davis, Charles A1 De Luca, Alberto A1 Delgado, Mauricio A1 Demetriou, Lysia A1 Dennison, Jeffrey A1 Di, Xin A1 Dickie, Erin A1 Dobryakova, Ekaterina A1 Donnat, Claire A1 Dukart, Juergen A1 Duncan, Niall W. A1 Durnez, Joke A1 Eed, Amr A1 Eickhoff, Simon A1 Erhart, Andrew A1 Fontanesi, Laura A1 Fricke, G. Matthew A1 Galvan, Adriana A1 Gau, Remi A1 Genon, Sarah A1 Glatard, Tristan A1 Glerean, Enrico A1 Goeman, Jelle A1 Golowin, Sergej A1 González-García, Carlos A1 Gorgolewski, Krzysztof A1 Grady, Cheryl A1 Green, Mikella A1 Guassi Moreira, João A1 Guest, Olivia A1 Hakimi, Shabnam A1 Hamilton, J. Paul A1 Hancock, Roeland A1 Handjaras, Giacomo A1 Harry, Bronson A1 Hawco, Colin A1 Herholz, Peer A1 Herman, Gabrielle A1 Heunis, Stephan A1 Hoffstaedter, Felix A1 Hogeveen, Jeremy A1 Holmes, Susan A1 Hu, Chuan-Peng A1 Huettel, Scott A1 Hughes, Matthew A1 Iacovella, Vittorio A1 Iordan, Alexandru A1 Isager, Peder A1 Isik, Ayse Ilkay A1 Jahn, Andrew A1 Johnson, Matthew A1 Johnstone, Tom A1 Joseph, Michael A1 Juliano, Anthony A1 Kable, Joseph A1 Kassinopoulos, Michalis A1 Koba, Cemal A1 Kong, Xiang-Zhen A1 Koscik, Timothy A1 Kucukboyaci, Nuri Erkut A1 Kuhl, Brice A1 Kupek, Sebastian A1 Laird, Angela A1 Lamm, Claus A1 Langner, Robert A1 Lauharatanahirun, Nina A1 Lee, Hongmi A1 Lee, Sangil A1 Leemans, Alexander A1 Leo, Andrea A1 Lesage, Elise A1 Li, Flora A1 Li, Monica A1 Lim, Phui Cheng A1 Lintz, Evan A1 Liphardt, Schuyler A1 Losecaat Vermeer, Annabel A1 Love, Bradley A1 Mack, Michael A1 Malpica, Norberto A1 Marins, Theo A1 Maumet, Camille A1 McDonald, Kelsey A1 McGuire, Joseph A1 Melero, Helena A1 Méndez Leal, Adriana A1 Meyer, Benjamin A1 Meyer, Kristin A1 Mihai, Paul A1 Mitsis, Georgios A1 Moll, Jorge A1 Nielson, Dylan A1 Nilsonne, Gustav A1 Notter, Michael A1 Olivetti, Emanuele A1 Onicas, Adrian A1 Papale, Paolo A1 Patil, Kaustubh A1 Peelle, Jonathan E. A1 Pérez, Alexandre A1 Pischedda, Doris A1 Poline, Jean-Baptiste A1 Prystauka, Yanina A1 Ray, Shruti A1 Reuter-Lorenz, Patricia A1 Reynolds, Richard A1 Ricciardi, Emiliano A1 Rieck, Jenny A1 Rodriguez-Thompson, Anais A1 Romyn, Anthony A1 Salo, Taylor A1 Samanez-Larkin, Gregory A1 Sanz-Morales, Emilio A1 Schlichting, Margaret A1 Schultz, Douglas A1 Shen, Qiang A1 Sheridan, Margaret A1 Shiguang, Fu A1 Silvers, Jennifer A1 Skagerlund, Kenny A1 Smith, Alec A1 Smith, David A1 Sokol-Hessner, Peter A1 Steinkamp, Simon A1 Tashjian, Sarah A1 Thirion, Bertrand A1 Thorp, John A1 Tinghög, Gustav A1 Tisdall, Loreen A1 Tompson, Steven A1 Toro-Serey, Claudio A1 Torre, Juan A1 Tozzi, Leonardo A1 Truong, Vuong A1 Turella, Luca A1 van’t Veer, Anna E. A1 Verguts, Tom A1 Vettel, Jean A1 Vijayarajah, Sagana A1 Vo, Khoi A1 Wall, Matthew A1 Weeda, Wouter D. A1 Weis, Susanne A1 White, David A1 Wisniewski, David A1 Xifra-Porxas, Alba A1 Yearling, Emily A1 Yoon, Sangsuk A1 Yuan, Rui A1 Yuen, Kenneth A1 Zhang, Lei A1 Zhang, Xu A1 Zosky, Joshua A1 Nichols, Thomas E. A1 Poldrack, Russell A. A1 Schonberg, Tom YR 2019 UL http://biorxiv.org/content/early/2019/11/15/843193.abstract AB Data analysis workflows in many scientific domains have become increasingly complex and flexible. To assess the impact of this flexibility on functional magnetic resonance imaging (fMRI) results, the same dataset was independently analyzed by 70 teams, testing nine ex-ante hypotheses. The flexibility of analytic approaches is exemplified by the fact that no two teams chose identical workflows to analyze the data. This flexibility resulted in sizeable variation in hypothesis test results, even for teams whose statistical maps were highly correlated at intermediate stages of their analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Importantly, meta-analytic approaches that aggregated information across teams yielded significant consensus in activated regions across teams. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset. Our findings show that analytic flexibility can have substantial effects on scientific conclusions, and demonstrate factors related to variability in fMRI. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for multiple analyses of the same data. Potential approaches to mitigate issues related to analytical variability are discussed.