RT Journal Article SR Electronic T1 Functional Organization of Mouse Primary Auditory Cortex in adult C57BL/6 and F1 (CBAxC57) mice JF bioRxiv FD Cold Spring Harbor Laboratory SP 843300 DO 10.1101/843300 A1 Zac Bowen A1 Daniel E. Winkowski A1 Patrick O. Kanold YR 2019 UL http://biorxiv.org/content/early/2019/11/15/843300.abstract AB The primary auditory cortex (A1) plays a key role for sound perception since it represents one of the first cortical processing stations for sounds. Recent studies have shown that on the cellular level the frequency organization of A1 is more heterogeneous than previously appreciated. However, many of these studies were performed in mice on the C57BL/6 background which develop high frequency hearing loss with age making them a less optimal choice for auditory research. In contrast, mice on the CBA background retain better hearing sensitivity in old age. Since potential strain differences could exist in A1 organization between strains, we performed comparative analysis of neuronal populations in A1 of adult (~10 weeks) C57BL/6 mice and CBAxC57 F1 mice. We used in vivo 2-photon imaging of pyramidal neurons in cortical layers L4 and L2/3 of awake mouse primary auditory cortex (A1) to characterize the populations of neurons that were active to tonal stimuli. Pure tones recruited neurons of widely ranging frequency preference in both layers and strains with neurons in CBA mice exhibiting a wider range of frequency preference particularly to higher frequencies. Frequency selectivity was slightly higher in C57BL/6 mice while neurons in CBA mice showed a greater sound-level sensitivity. The spatial heterogeneity of frequency preference was present in both strains with CBA mice exhibiting higher tuning diversity across all measured length scales. Our results demonstrate that the tone evoked responses and frequency representation in A1 of adult C57BL/6 and CBAxC57 F1 mice is largely similar.