A congenital pain insensitivity mutation in the nerve growth factor gene uncouples nociception from affective pain in heterozygous humans and mice Giovanna Testa¹, Irene Perini², Marco Mainardi¹, Chiara Morelli³, Francesco Olimpico¹, Laura Pancrazi^{1,4}, Carla Petrella⁵, Cinzia Severini⁵, Rita Florio⁷, Francesca Malerba⁷, Paul Heppenstall³, Mario Costa⁴, India Morrison^{2*}, Simona Capsoni^{1,6*} and Antonino Cattaneo^{1,7*} ## $Supplementary\ Figure\ 1.\ Molecular\ strategy\ for\ the\ generation\ of\ wild\ type\ and\ R100W\ knock-$ **in mice. a,** *Up*, endogenous mouse NGF locus with 5'and 3' Southern blot probes and expected sizes of wild type Southern blot bands; *middle*, targeting vector for site-specific recombination; *down*, targeted NGF locus with 5' and 3' Southern blot probes and expected sizes of recombinant Southern Blot bands. Color codes are: pink, mouse NGF coding sequence; yellow, human NGF coding sequence; brown, NeoR positive selection cassette; orange, PGK promoter; blue, loxP sites; light green, left and right homology arms; dark green, Diphteria Toxin A (DTA) negative selection marker. **b**, Representative image of ES cells Southern Blot. **c**, PCR genotyping of NGF^{R100W/m}, NGF^{m/m} and NGF^{R100W/R100W} mice; wild-type band: 400bp, mutant band: 200bp. Supplementary Figure 2. Rescue of early lethality of homozygous R100W mice by NGF. Homozygous R100W mice (NGF^{R100W/R100W}) die within the first month of life. Treatment of pregnant dams with subcutaneous NGF (1 μ g/kg) until 10 days after delivery, followed by subcutaneous and intranasal NGF (480 ng/kg) to pups until two months of age, rescued lethality in NGF^{R100W/R100W} mice. ¹ Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy ² Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden ³ EMBL Rome, Monterotondo, Italy ⁴ Institute of Neuroscience, CNR, Pisa, Italy ⁵ Institute of Cell Biology and Neurobiology, CNR, Rome, Italy ⁶ Institute of Human Physiology, Department of Medical and Surgical Specialties Sciences, Ferrara, Italy ⁷ Neurotrophins and Neurodegenerative Diseases Laboratory, Rita Levi-Montalcini European Brain Research Institute, Rome, Italy. ^{*} joint corresponding authors **Supplementary Figure 3. Decreased warm and hot sensitivity. a,** increased latency in NGF^{R100W/m} mice to respond to high temperatures. **b,** Higher temperature threshold for eliciting licking reaction in NGF^{R100W/m} mice. Supplementary Figure 4. Age-dependent reduction in hairy skin innervation, but unaffected tape removal performance in HSAN V mice. a, $NGF^{R100W/m}$ mice display a normal number of attempts in the tape removal test in both juveniles and adults despite a longer response latency at 6 months of age. b. Representative images and quantification of PGP9.5 expression show normal innervation at 2 months and a significant reduction at 6 months of age (scale bars, 50 μ m). **Supplementary Figure 5. Neurotrophic effect of hNGF**^{R100W} **in DRG cultures**. Comparable number of NeuN-immunoreactive cells after treatment with hNGF^{WT} and hNGF^{R100W}. **Supplementary Figure 6. NGF bioavailability in R100W condition. a**, Impaired secretion of human NGF^{R100W} in HEK293 cells transfected with the corresponding plasmid, similarly to what reported in Larsson et al.2009. The co-transfection of HEK293 cells with human NGF^{WT} and human NGF^{R100W}, to mimic heterozygous condition, shows that the latter induces a decrease in the secretion of human NGF^{WT}. **b**, Consistently, the amount of NGF in brain extracts from NGF^{R100W/m} mice was significantly diminished. **Supplementary Figure 7. Normal performance in Y maze.** NGF^{R100W/m} mice do not show difference in spatial memory compared to NGF^{m/m}. Supplementary Figure 8. Age-related effect of R100W mutation on anxiety behaviour. a, In the elevated plus maze, 6-month-old NGF^{R100W/m} mice spent more time in the open arms than NGF^{m/m} mice. b, The amount of marbles buried by NGF^{R100W/m} and NGF^{m/m} is similar at 2 months of age but is significantly reduced in NGF^{R100W/m} at 6 months of age. c, Nesting ability is normal in juvenile but impaired in adult HSAN V mice. Data are presented as mean \pm SEM. **Supplementary Figure 9. Normal social interaction in HSAN V mice assessed with 3-chamber test.** 6-month-old HSAN V mice perform similarly to NGF^{h/m} mice in the sociability phase. Supplementary Figure 10. Decreased plasmatic levels of oxytocin in HSAN V mice.