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Supporting Information 

Methods 

D. simulans experimental population and the selection regime  

Ten replicates of D. simulans were established using 202 isofemale lines from a natural D. 

simulans population collected in Tallahassee, Florida, USA (1). These replicates were maintained 

in a new hot environment in which both temperature and light cycled every 12 hours between 

18 and 28C, corresponding to night and day. The replicates had a census population size of 

1000 and ~50:50 sex ratio. The flies in each replicate were equally distributed across five 300ml 

bottles containing 70 ml of standard Drosophila medium. 

 

Genome sequencing and mapping of sequence reads 

Genomic DNA was extracted for all replicates at generation 0 (females only) and all evolved 

replicates in 10 generation intervals until generation 60 (mixed sexes). The replicates at 

generation 0 will be referred to as ‘ancestral population’ hereafter. Details of DNA extraction 

and library preparation will be provided upon request. Sequencing of paired-end 100bp reads 

resulted in an average genome-wide sequence coverage of ~216x for each ancestral and ~103x 

for each evolved replicate. Trimming, mapping and filtering of reads was performed as 

described in (1).  

 

SNP calling  

SNPs were called from replicates of the ancestral population; in brief, SNPs with base quality of 

40 in at least one of the ten ancestral replicates were selected for further analyses. To improve 
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the reliability of the pipeline, the polymorphic sites in the upper 1% and lower 1% tails of the 

coverage distribution (i.e.: ≥423x and ≤30x, respectively; upper tail based on the library with 

the highest sequencing depth, lower tail estimated from total coverage of all ancestral and 

evolved replicates at generation 60, Table S6) and minor alleles with coverage less than 10 

reads were removed. Furthermore, we masked repeats (transposable elements were annotated 

using the pipeline described in (2)) and 5-bp regions flanking indels (identified by PoPoolation2 

(3): using function identify-genomic-indel-regions.pl with options --indel-window 5 --min-count 

167). The minimum read count cutoff corresponds to 2% of the average coverage across all 

ancestral and evolved replicates. We further masked 200-bp flanking the SNPs specific to 

autosomal genes translocated to the Y chromosome (4). The remaining 5,096,200 SNPs on the 

major chromosomes were used for subsequent analyses. For these SNPs we determined the 

allele frequencies using only reads with a base quality score of at least 20 at the SNP position. 

 

Inference of candidate SNPs  

To identify SNPs with pronounced allele frequency changes (AFC) Fisher’s exact test and 

Cochran-Mantel-Haenszel (CMH) test were used. First, we contrasted the ancestral and the 

evolved replicates at generation 60 using the CMH test to identify SNPs with a consistent 

frequency change across replicates (using PoPoolation2, function cmh-test.pl). Second, the 

pronounced AFCs specific to each replicate were determined by contrasting each ancestral 

replicate with the corresponding evolved replicate at generation 60 (for example ancestral 

replicate 5 with evolved replicate 5) using Fisher’s exact test (Popoolation2, function fisher-

test.pl: option --min-count 5). For the parameters of fisher-test.pl, the minimum SNP coverage 
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for each replicate was set to 5% of the average coverage of ancestral and evolved replicates at 

generation 60. For the maximum coverage, the upper 1% tail of the coverage distribution in the 

replicate with the highest sequencing depth was chosen (Table S6). In total, 10 Fisher exact 

tests were performed. 

Neither the CMH nor the Fisher’s exact test account for drift. Thus, to determine the 

candidate SNPs whose AFCs were higher than expected under neutral drift, forward Wright-

Fisher simulations were performed with Nest (5) (function wf.traj) assuming independence 

among alleles. As a first step for the neutral simulations, the effective population sizes (Ne) 

were estimated for each of the replicates. We used windows of 1000 SNPs based on AFCs 

between the ancestral and evolved replicates at generation 60 for autosomes (each 

chromosome separately) and the X-chromosome using Nest (function estimateWndNe, method 

Np.planI). We averaged the medians of the Ne estimates across replicates; the estimated Ne 

was 291 for autosomes and 262 for the X-chromosome (Table S5) and we used these estimates 

of Ne to perform simulations to determine the False Discovery Rate (FDR: true positive/[false 

positive+true positive]) of the CMH test. We determined the FDR of Fisher’s exact test by 

performing neutral simulation using replicate-specific Ne estimates for autosomes (Table S5) 

and a Ne of 262 for the X-chromosome. The simulation parameters (i.e. number of SNPs, allele 

frequencies in the ancestral replicates, sequence coverage of replicates, and the number of 

replicates and generations) matched the experimental data. Candidate SNPs were inferred 

based on an empirical CMH/Fisher’s exact test cutoff using a 5% FDR based on neutral 

simulations.  
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Reconstruction of the selected haplotype blocks (selected alleles) 

In experimental evolution studies using D. melanogaster many neutral SNPs are linked to the 

target(s) of selection (6, 7). Therefore, it was proposed to shift the focus from candidate SNPs 

to haplotypes, which carry the selected target(s) (8). Taking advantage of correlated allele 

frequency changes of SNPs, which are characteristic for a given haplotype, the genomic region 

under selection can be inferred and the rising haplotype blocks reconstructed. We identified 

haplotype blocks using a modification of a recently published approach (8). 

First, we grouped candidate SNPs together with stringent clustering (minimum average 

Pearson’s correlation coefficient of 0.75 among SNPs). Candidate SNPs (5% FDR) inferred from 

both CMH and Fisher’s exact tests were combined and used for haplotype block reconstruction; 

the candidate SNPs (5% FDR) from the CMH test were polarized based on the rising allele and 

only SNPs with a frequency increase of ≥0.2 (between any time points from F0 to F60) in at 

least two replicates were retained. Additionally, all candidate SNPs (5% FDR) from Fisher’s exact 

tests were polarized based on the rising allele and used for block reconstruction. The allele 

frequencies of these candidate SNPs were transformed (arcsine of the square root, using 

numpy.arcsin and numpy.sqrt functions in Python) and standardized, i.e. centered to mean and 

scaled to unit variance (using function sklearn.preprocessing.scale in Python). The left and right 

arms of chromosomes 2 and 3 were concatenated for this analysis since some haplotype blocks 

overlap the centromere. All pairwise Pearson’s correlation coefficients were computed among 

SNPs in sliding windows of 1Mb with a step size of 500kb. Each window should have at least a 

minimum of 20 SNPs. The correlation matrix was converted to Euclidean distance, d = 2(1-r), 

and entered in a distance matrix (using function scipy.spatial.distance.squareform in Python) 
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which was used for hierarchical clustering (using function scipy.cluster.hierarchy.linkage in 

Python). SNPs with the minimum average Pearson’s correlation coefficient of 0.75 were 

classified into a cluster. Only clusters with more than 20 SNPs were retained. Clusters obtained 

from overlapping windows were merged if they shared at least five SNPs.  

Second, all the SNPs in clusters with average correlation of 0.75 (see above) were 

collected and used for another round of clustering (similar to above) but SNPs with the 

minimum average Pearson’s correlation coefficient of 0.35 were classified into a cluster. Similar 

to above, clusters that share at least five SNPs in overlapping windows were merged. 

 

Inference of selection coefficient 

Selection coefficients (s) were estimated with Pool-Seq (9) (using the function estimateSH) 

which uses time-series allele frequency data to infer s. Because the selected SNP is not known, 

our estimates of s rely on the frequency of the selected haplotype block/allele (SI Text: 

Definition of selected allele). We defined the frequency trajectory of the selected haplotype 

block/allele in each replicate as the median frequency of all SNPs characteristic to the selected 

haplotype block/allele. A haplotype block/allele with a frequency increase of ≥0.1 is considered 

to be selected in a given replicate. An AFC of 0.1 corresponds to the upper 1% tail of the 

absolute average AFC distribution across 10 replicates in neutral simulations (see ‘Inference of 

candidate SNPs’ for details of neutral simulations). Thus, for replicates with at least 0.1 

frequency increase of selected haplotype block/alleles after 60 generations s was estimated for 

each replicate separately, and the median s across the corresponding replicates is reported as 

the selected haplotype block/allele’s s (Fig. 3B, Fig. S4A). This estimated s was used for 
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subsequent analyses and simulations unless mentioned otherwise. To make sure that the 

estimated s is not biased by the method used for allele frequency estimation, we used different 

approaches to estimate the frequency of a given selected allele (SI Text: ‘Different approaches 

to estimate allele frequencies for inference of selection coefficient’). A dominance of 0.5 was 

considered in all s estimations. 

To identify factors contributing to the estimated s, we initially fitted a linear model with 

three fixed continuous effects (starting frequency: p0, the number of replicates in which a 

specific allele increases 0.1 in frequency: replicate frequency, and locus size (the genomic 

region corresponding to an allele): size) and interaction between replicate frequency and p0. s 

and replicate frequency were log10-transformed (log10 function in R) and the square root of p0 

was arcsin-transformed (asin and sqrt functions in R). Due to non-linearity of p0 a quadratic 

term (squared p0) was also added to the model. The interaction between replicate frequency 

and p0 was not significant and therefore dropped from the model (sijklm ~  + p0i + replicate 

frequencyj + p0
2

k + sizel + errorijklm). The data met the assumptions of normality of the residuals 

and homogeneity of variance.  

 

Experimental inference of haplotypes  

We experimentally determined the full chromosomal haplotypes by crossing males from the 

ancestral population and the evolved replicates with virgin females from the reference strain 

M252 (10) (Genbank BioSample SAMN02713493). In total, we obtained 100 haplotypes from 

five evolved replicates (20 from replicate 1 at F88, 36 from replicate 3 at F103, 20 from 

replicate 4 at F88, 12 from replicate 7 at F103, 12 from replicate 10 at F103). We also obtained 



7 
 

189 haplotypes from isofemale lines that were used to seed the ancestral population. A single 

F1 female of each cross was used for DNA extraction and sequencing. Details of DNA extraction 

and library preparation are available upon request. Trimming the sequencing reads for evolved 

and ancestral haplotypes was performed as described in (1). Reads of the evolved haplotypes 

were mapped as explained in (1) and for the ancestral haplotypes using Novoalign version 

3.03.2 (http://www.novocraft.com/products/novoalign/, parameters: -r Random –i  

mean,standard deviation of reads). Filtering of mapped reads for evolved and ancestral 

haplotypes was performed as described in (1). 

Evolved haplotypes were called from F1 individuals as described in (11). The F1 

genotype was compared to the reference strain (Genbank assembly accession: 

GCA_000820565.1) and the parental alleles were determined. Haplotype base calls were 

performed for positions that had a coverage larger than 10 and less than the maximum 2% 

coverage of the respective library. For ancestral haplotypes, SNP were called with freebayes 

(12) (version v1.1.0-46-g8d2b3a0) and the recombination rate was computed using LDJump 

(13) (version 0.1.4). 

 

Contrasting selective sweep model and quantitative genetics model 

We observed a highly heterogeneous response across the 10 hot-evolved replicates; most of 

the 99 selected alleles increase in only four to six replicates (Fig. 3C,D, Fig. 4B,D). We used this 

heterogeneous pattern among replicates to discern several different adaptive scenarios (Fig. 

S3). 

http://www.novocraft.com/products/novoalign/
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To compare different models (sections A-D below correspond to scenarios A-D in Fig. S3) 

to the empirical data, we used the ‘replicate frequency spectrum’ (RFS), i.e. the frequency 

distribution of replicates in which selected alleles increase in frequency, as a summary statistic 

to measure the fit between simulated and observed data. Specifically, if an allele increases in 

frequency by at least 0.1 after 60 generations, we considered this a replicate with selection 

signature (an AFC of 0.1 corresponds to the upper 1% tail of the absolute average AFC 

distribution across 10 replicates in neutral simulations). In all simulations summarized in section 

A-D, RFS was determined, and for each category, mean and 95% confidence interval were 

computed. For each simulation, we compared RFS in observed data and the simulations by a 2 

goodness of fit test with n-2 degree of freedom (n=number of replicates). 

 

A. Sweep model without linkage and a constant selection coefficient across replicates 

Because drift in small populations can result in considerable heterogeneity among replicates, 

we used computer simulations to test whether the observed heterogeneity among replicates 

can be explained by the combined effect of the sweep paradigm and drift. A total of 1000 sets 

of forward Wright-Fisher simulations were performed using Nest (function wf.traj). In each set, 

99 independent alleles (matching the observed number of selected alleles) were simulated 

using the observed starting frequency (median frequency of SNPs characteristic to the selected 

haplotype block/allele) in the ancestral replicates (Fig. 3A), replicate-specific Ne (Table S5) and 

allele-specific s (Fig. 3B, Fig. S4A) assuming no linkage and epistasis (A2 in Fig. S3). Selected 

alleles on autosomes and the X-chromosome were simulated separately using Ne estimated for 

autosomes and the X-chromosome, respectively (Table S5). The allele-specific s was estimated 
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by the default approach described in Materials and Methods: Inference of selection coefficient; 

in brief, for each selected haplotype block/allele, we first estimated the median frequency 

trajectory across all characteristic SNPs in a given replicate. Replicates with AFC 0.1 were used 

to determine s, and the median s across replicates was used in the simulations. Simulations 

with slightly different parameters were performed to assure that the above simulations are not 

biased by the allele-specific starting frequency and s (SI Text, Fig. S3, S5).  

 

B. Sweep model with linkage and a constant selection coefficient across replicates 

We simulated a sweep model assuming linkage among selected alleles to rule out that Hill-

Robertson interference caused the genetic heterogeneity among the replicates. We used 189 

individually sequenced haplotypes from the ancestral population (Materials and Methods: 

Experimental inference of haplotypes) for the simulations. We simulated 99 selected alleles 

(the number of selected alleles in the experimental data) in 10 replicates of a population of 300 

diploids (corresponding to the estimated Ne) in 1000 iterations with the recombination rate 

estimated from the haplotypes. The allele-specific s were obtained from the median s (Fig. S4A) 

estimated from replicates with AFC 0.1 for the selected alleles (B2 in Fig. S3). For the 

simulations, the position and starting frequency of the selected target was chosen to match the 

position of one of the characteristic SNPs in the selected haplotype block/allele and the starting 

frequency of the selected allele in the ancestral population (Fig. 3A), respectively. Simulations 

were performed using function w in Mimicree2 (version mim2-v193), which uses haplotype 

information and also accounts for the differences between the X-chromosome and autosomes 

(https://sourceforge.net/projects/mimicree2/).  

https://sourceforge.net/projects/mimicree2/
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Simulations with different parameters were performed to assure that the above 

simulations are not biased by the allele-specific starting frequency and s. We simulated alleles 

using s (Fig. S4F) and starting frequency (Fig. S4H) estimated for the core region of alleles with 

0.1 frequency increase after 60 generations (B1 in Fig. S3, see SI Text: ‘Different approaches to 

estimate allele frequencies for inference of selection coefficient’ for definition of core region). 

All other parameters are similar to above simulations. We did not obtain a good fit to the 

empirical Replicate Frequency Spectrum (Fig. S8).  

 

C. Genetic redundancy model 

One prediction of the quantitative trait model with stabilizing selection is that the same trait 

optimum can be obtained by different combinations of contributing alleles (genetic 

redundancy). Rather than simulating the trajectories of selected alleles we first tested whether 

we find evidence for genetic redundancy. 

Independent of whether we conditioned on a 0.1 or 0.2 allele frequency increase after 

60 generations, a different number of selected alleles was detected among the replicate 

populations (Fig. S9). Nevertheless, all replicates converged for the high-level phenotypes: 

fitness, fat content and resting metabolic rate (Materials and Methods: Phenotypic assays; Fig. 

2C,D, Fig. S1B). Therefore, we tested if the frequency distribution of the selected alleles among 

replicates of our experiment fits a model of full genetic redundancy. Assuming that all alleles 

are functionally equivalent, we generated 1000 data sets using delete-d jackknifing. In each set 

the number of selected alleles for each replicate matched our observations (Fig. 4A), but was 

randomly drawn (without replacement) from the total of 99 selected loci (C in Fig. S3).  
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We calculated the Jaccard index (|AB| / |AB|) of all pairwise combinations of hot-

evolved replicates using the number of selected alleles with 0.1 AFC after 60 generations to 

determine the similarity among replicates (C in Fig. S3). Correspondingly, pairwise Jaccard 

indices were also computed for simulations of genetic redundancy model (Fig. 4B).  

As a further test for the redundancy model, we predicted the fitness for all 10 hot-

evolved replicates by summing frequencies of all the 99 selected alleles at generation 60 (C in 

Fig. S3). Because this test assumes equal effects of the selected alleles, similar values for the 

predicted fitness across replicates supports a redundancy model with alleles of similar effects. 

 

D. Quantitative trait model 

To determine whether the genomic heterogeneity among the replicates of the empirical data 

could be obtained by a quantitative trait model, we simulated frequency trajectories of alleles 

contributing to a quantitative trait after a change in trait optimum (D in Fig. S3). Using forward 

simulations in diploids assuming random mating, we simulated 1000 iterations of a quantitative 

trait in 10 replicates with 99 contributing alleles having the same starting frequency as the 

selected alleles in the empirical data (Fig. 3A). Alleles were in linkage equilibrium and had equal 

effects. The fitness ranged between 0.5-4.5 and the mean fitness optimum was set to 0.60.3 

(standard deviation). Simulations were performed using the python script (frequencyAt-pheno-

quantitative.py) provided in (14).  
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Identification of transposable elements 

Because the ancestral population experienced the invasion of a P-element (15), it may be 

possible that new P-element insertions were driving adaptation and thus contribute to the 

observed heterogeneity among replicates. Adaptation driven by the P-element should result in 

a frequency increase of the P-element, which matches the frequency increase of the 

corresponding allele in a given replicate. Hence, we first identified P-element insertions, and 

then compared the frequency increases of the P-elements to the one of selected alleles.  

The raw reads of all 10 evolved replicates at generation 60 were separately mapped to a 

TE-merged-reference genome using bwa (16) version 0.7.9a (bwasw algorithm). The reference 

genome consists of the repeat-masked reference genome and TE sequences as described in (2). 

The paired reads were restored (function se2pe) and a ppileup file was generated using 

PoPoolationTE2 (17). All 10 evolved replicates were down-sampled (function subsamplePpileup) 

and transposable element (TE) insertions were identified with PoPoolationTE2 (functions 

identifySignatures and frequency). The identified TE insertions were filtered (filterSignatures 

with parameters --max-otherte-count 2 --max-structvar-count 2) and the final set of insertions 

was identified (function pairupSignatures).  

We filtered the identified P-elements by selecting those with frequencies ≥0.1 that have 

insertion sites in the genomic regions corresponding to selected alleles. Furthermore, the P-

elements with frequency increase must be present in at least one of the replicates which have 

frequency increase of ≥0.1 for any given selected allele. Then, for each selected allele with an 

available P-element in the filtered dataset we computed delta (absolute frequency difference) 
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using the frequency of the allele in any of the two replicates with highest frequency at 

generation 60 and the frequency of the P-element in those replicates.  

  

Gene Ontology (GO) and pathway enrichment analyses 

We used Gowinda (18) to associate the characteristic SNPs in the selected haplotype 

blocks/alleles with their biological functions and determine enrichment of any specific GO 

category. This tool corrects for biases introduced by gene lengths. The GO enrichment analysis 

was performed in gene mode, with 100,000 simulations. The associated GO terms were 

downloaded from GoMiner (19). We repeated the enrichment analysis using pathways 

obtained from KEGG (20).  

 

Phenotypic assays 

All phenotypic assays were performed in a common garden setting (with temperature 

fluctuating between 18 and 28°C) to eliminate the possibility that uncontrolled environmental 

variation is affecting the phenotypic measurements. We reconstituted the ancestral population 

from the isofemale lines that were used to seed the original ancestral population. As the 

effective population size of isofemale lines is very small, very limited adaptation is expected to 

have occurred during their maintenance in the lab (21, 22). Even mutations accumulated during 

the maintenance of the isofemale lines are not expected to have a major influence as they will 

be specific to individual isofemale lines and will thus represent only a small fraction in the 

reconstituted ancestral population. We refer to the reconstituted ancestral population as 

‘ancestral population’ hereafter. All 10 evolved replicates and the ancestral population were 
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maintained for at least two generations at the assaying conditions with controlled density (400 

eggs per bottle) prior to assays to avoid maternal effects.  

 

A. Fecundity assay 

At generation 103, between three to six technical replicates were set up for each of the 10 

evolved replicates to ensure reliable fecundity estimates. 10 technical replicates were set up for 

the ancestral population. Immediately after eclosion, around 250 flies (females and males) 

were put in a bottle. Since the flies were collected under CO2 anesthesia, we only started 

measuring fecundity in two days old flies. For the next four days, which corresponds to the egg 

laying period during the experimental evolution, the flies were daily transferred to new bottles 

without CO2 anesthesia and the eggs in each bottle were counted. After the fourth day, females 

and males were separated, the females were counted, dried and weighed. Fecundity, measured 

as the total number of eggs laid per female during four days (between day two to five after 

eclosion), was log10-transformed and analyzed using linear model.  

To test for the significance between fecundity of the ancestral and evolved (all 10 

evolved replicates combined) populations, we initially fitted a linear mixed model with a fixed 

categorical effect (population) with two levels (ancestral and evolved) and a fixed continuous 

effect (average body weight). The technical replicates were included as random effect. The 

mixed model was not significantly different from the linear fixed effects model tested using the 

function anova. Therefore, following the principle of parsimony we present results from the 

linear fixed effects model (Fecundityijk ~  + populationi + average body weightj + errorijk). The 

data met the assumptions of normality of the residuals and homogeneity of variance. 
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The model to test for differences between the 10 evolved replicates was the same as 

above, but with population being a fixed categorical effect with 10 levels. The mixed effects 

model including a random effect to model the covariance between the technical replicates was 

not significantly better than the fixed effects model and hence we dropped it in favor of the 

simpler fixed effects model. Significance of the fixed effects was tested using ANOVA F-tests. 

We present effect sizes as lsmeans calculated with package lsmeans (23) and used Tukey’s 

honest significant difference (HSD) to correct for multiple testing.  

 

B. Resting metabolism assay 

The evolved populations were at generation 113 when phenotyped for resting metabolic rate. 

The flies used for measurement of metabolic rate were maintained at controlled density as 

described above (evolved replicates for seven to nine and ancestral population for four to 

seven generations). Flies were collected immediately after eclosion, mated for 24 hours and 

then females and males were separated and maintained in bottles with Drosophila medium 

(150 flies in a bottle). After 48 hours of CO2 anesthesia recovery, flies were used for metabolic 

rate measurement. Females and males were four to five and six to seven days old, respectively, 

during resting metabolic measurements. Our preliminary assays identified no significant 

difference in the metabolic rate of four to five and six to seven days old males when groups of 

25 males were tested in RC respirometry chambers (30ml, Sable Systems, Las Vegas, Nevada, 

USA). For measuring metabolic rate, 150 flies were transferred to 250-ml bottles without CO2 

anesthesia. To avoid desiccation and starvation, 50 ml of Drosophila medium were placed in 

each bottle and sealed with a stopper. The resting metabolic rate was measured by repeated 
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CO2 emission measurements of stop-flow respirometry (Sable Systems, Las Vegas, Nevada, 

USA). Flies of different replicates were randomly assigned to each bottle and one bottle with 

only Drosophila medium was used as an empty control in each run. CO2 measurement was 

conducted at 18°C in the dark, overnight for at least 12hrs. During the measurement assay, an 

8-channel-multiplexer (RM8 Intelligent Multiplexer) controlled the sequential flushing and 

closing of eight bottles. Each bottle was flushed for 15 minutes at a constant flow rate of 75 

µL/min. After the flush phase, the bottle was closed while the rest of bottles continued to be 

flushed. Therefore, CO2 in each bottle was measured every two hours. The flushed air passed 

through a Magnesium perchlorate column to remove water, and CO2 was measured with a CA-

10A Carbon dioxide Analyzer (Sable Systems, Las Vegas, Nevada, USA). At the end of each run, 

the flies were counted, dried and weighed. An in-house macro was used for computing the total 

CO2 emission during each flushing time and the mean flow rate by ExpeData software. The 

resting metabolic rate for each bottle was computed as the average of the three lowest data 

points (24). The metabolic rate is presented as VCO2 L h-1 mg-1. A total of 32 measurements (16 

for each sex) were done for the ancestral population. At least six measurements were 

performed for each evolved replicate (three for each sex). 

To test for the significance between the metabolic rate of the ancestral and evolved (all 

10 evolved replicates combined) populations, we initially fitted a linear mixed model with two 

fixed categorical effects (population and sex) each with two levels (population: ancestral and 

evolved, sex: female and male) and interaction between the fixed categorical effects. Multiple 

measurements of replicates were included as random effect. Similar to fecundity, the mixed 

model was not significantly different from the linear fixed effects model. Therefore, we present 
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results from the linear fixed effects model (Metabolismijk ~  + populationi + sexj + populationi : 

sexj + errorijk). The data met the assumptions of normality of the residuals and homogeneity of 

variance. 

We used the same model as above to test for differences between the 10 evolved 

replicates, but with population being a fixed categorical effect with 10 levels. We included a 

random effect to model covariance between the technical replicates but it was not significantly 

better than the fixed effects model and hence dropped in favor of the simpler fixed effects 

model. Significance of the fixed effects was tested using ANOVA F-tests. We present effect sizes 

as lsmeans and used Tukey’s HSD to correct for multiple testing.  

 

C. Body fat assay 

We assayed the ancestral population and evolved replicates for fat content at generation 124. 

Similar to other phenotypic assays, the evolved replicates and ancestral population were 

maintained in a density controlled common garden setting (for three to six generations). After 

eclosion flies were mated, females and males were separated, and placed in vials (eight flies in 

each vial). After 48 hours, the body fat was measured in four-day-old flies three hours after the 

start of the daily 28ºC cycle. Homogenates were prepared as described in (25) and lipid 

measurements were performed by coupled colorimetric assay as described in (26). Flies were 

placed in a 2-ml screwcap tube containing 600 l 0.05% Tween-20 and two 5-mm sterile metal 

beads and homogenized by a SPEX SamplePrep 1600 MiniG for 2 minutes at 1,475 rpm. 

Homogenates were heat-inactivated for 5 minutes at 70C, centrifuged for 9 minutes at 9,000 

rpm, and 200 l of the supernatant was transferred to an Eppendorf tube and immediately 
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used for lipid measurements. We used a Glycerol standard (Sigma G7793) as reference. 50l of 

supernatant and standards (1.2, 1, 0.8, 0.6, 0.4, 0.2, 0.1, 0 mg/ml) were transferred to a 96-well 

plate and blank absorbance was measured at 540 nm in an EnSpire 2300 Microplate Reader 

(PerkinElmer). 200 l of Triglyceride Working Reagent (Sigma, Catalog number TR0100) was 

added to each sample and standards and incubated at 37C for 30 minutes with mild shaking. 

After the incubation time, the final absorbance was measured at 540 nm. The two 

measurements were first blank-corrected by subtraction of blank (i.e. 0.05% Tween-20) and 

then the second absorbance was subtracted from the first absorbance. Glycerol standards were 

done in duplicates and two measurements were averaged for the standard curves with 

polynomial regression line to compute the concentration of triglyceride (TAG) in the samples. 

Fat content is expressed as g TAG equivalents/fly. A total of 26 measurements (13 for each 

sex) were done for the ancestral population and eight measurements were performed for each 

evolved replicate (four for each sex). 

The measured fat content (g TAG equivalents/fly) was log-transformed and analyzed 

using a linear model. To test for the significance between the fat content of the ancestral and 

evolved (all 10 evolved replicates combined) populations, we initially fitted a linear mixed 

model with two fixed categorical effects (population and sex) each with two levels (population: 

ancestral and evolved, sex: female and male), a fixed continuous effect (average body weight) 

and interaction between the fixed categorical effects. Multiple measurements of replicates 

were included as random effect. Due to error during weighing, for six measurements we did not 

provide weight values in the linear model. The average body weight was not significant and 

therefore dropped from the model. The mixed model was also not significantly different from 
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the linear fixed effects model. Therefore, we present results from the linear fixed effects model 

(Lipidijk ~  + populationi + sexj + populationi : sexj + errorijk). The data met the assumptions of 

normality of the residuals and homogeneity of variance. 

The same model as above was used to test for differences between the 10 evolve 

replicates. Here, we treated population as a fixed categorical effect with 10 levels. Similar to 

other phenotypic assays, the mixed effects model including a random effect was not 

significantly better than the fixed effects model and hence dropped in favor of the simpler fixed 

effects model. The interaction between fixed effects was dropped from the final model since it 

was not significant. Significance of the fixed effects was tested using ANOVA F-tests. We 

present effect sizes as lsmeans and used Tukey’s HSD to correct for multiple testing. 

All the analysis and data visualization have been performed in Python 2.7.10 (Python 

Software Foundation. Python Language Reference) and R 3.3.1 (R development Core Team. 

2015). 
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SI Text  

Reconstructing blocks of selected haplotypes  

Because only few recombination events occur during 60 generations of E&R in Drosophila, 

selected variants typically occur on rather large haplotypes (6, 7). While some methods have 

been proposed to reconstruct haplotypes from PoolSeq data (27–29), in absence of information 

about all ancestral haplotypes, the inference does not have sufficient reliability. Although we 

have sequenced 189 phased haplotypes from the ancestral population, this number accounts 

for only about 25% of the founder chromosomes (the 202 isofemale lines used for establishing 

the ancestral population were not inbred). Hence, we identify haplotypes carrying the 

beneficial mutation using a modification of a recently published approach (8).  

We identified 5,096,200 SNPs on the major chromosomes after stringent filtering steps 

(Materials and Methods: SNP calling). To identify SNPs with pronounced AFC, we performed 

CMH and Fisher’s exact tests contrasting the ancestral replicates with the evolved replicates at 

generation 60 (Materials and Methods: Inference of candidate SNPs). However, these test do 

not account for drift. Thus, to identify SNPs with more pronounced AFC in the evolved 

replicates than expected by genetic drift, we performed forward Wright-Fisher simulations. 

Based on an empirical CMH/Fisher’s exact test cutoff using a 5% FDR we obtained 47,532 

candidate SNPs across replicates (CMH test) and 4,667 additional SNPs deviated from neutral 

expectations in at least one of the replicates (Fisher’s exact test). This number of candidate 

SNPs is heavily inflated due to the considerable linkage expected in our experiment.  

We reasoned that SNPs specific to selected haplotypes have correlated allele 

frequencies across replicates and time points (8). Thus, we clustered SNPs by allele frequencies 
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and shifted our focus from candidate SNPs to selected haplotypes. First, we grouped SNPs with 

a stringent correlation (average Pearson’s correlation=0.75, Materials and Methods: 

Reconstruction of the haplotype blocks (selected alleles)) and identified many relatively short 

haplotype blocks (Fig. 1A, B). Recombination, either in the ancestral population or during the 

experiment results in less strongly correlated allele frequency trajectories. Hence, several 

adjacent haplotype blocks show very similar frequency change across replicates (Fig. 1C). We 

combined such short blocks with similar trajectories using less stringent clustering (average 

Pearson’s correlation=0.35). The importance of combining SNPs with correlated allele 

frequency trajectories into a haplotype block is evident from the presence of several distinct 

peaks in the genomic region underlying a haplotype block (Fig. 1A) but a naïve interpretation 

may have suggested several independent alleles. A total of 99 selected haplotype blocks 

containing 23,835 SNPs were identified on the major chromosomes.  

To demonstrate the robustness of this approach, we sequenced 100 phased haplotypes 

from five different evolved replicates and also 189 phased haplotypes from the ancestral 

population. 84% and 82% of the identified haplotype blocks were validated in the evolved and 

ancestral haplotypes, respectively (see Fig. 1F for an example, Table S1). In total 96% of the 

identified haplotype blocks were experimentally validated. Blocks that could not be validated 

either have low frequency in the ancestral population or had frequency increase in an evolved 

replicate with no available phased haplotype.   

The reconstructed haplotype block is considered a selected allele for the subsequent 

analyses (Fig. 1D, E). 
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Definition of selected allele  

Typically, multiple haplotypes are associated with a putative selection target, in particular when 

it occurs at higher frequency. As we cannot identify the selected mutation, we use the term 

“selected allele” to describe a suite of haplotype blocks carrying the target(s) of selection. Due 

to the limited mapping resolution in our experiment, we cannot distinguish whether the 

selection signature of a selected allele is generated by multiple selected targets (allelic 

heterogeneity) or a single target of selection. 

Nevertheless, we addressed the possibility that the strong selection response in our 

experiment is driven by the combined effect of a large number of small effect alleles located on 

the selected haplotype blocks: if a large number of randomly distributed alleles contributes to 

the selected trait (i.e. infinitesimal model), the size of a selected genomic region should 

correlate with the number of contributing alleles-resulting in stronger selection for larger 

haplotype block. We tested this by regressing the estimated selection coefficient (s) with 

haplotype block’s starting frequency, replicate frequency (the number of replicates in which a 

specific haplotype block increases 0.1 in frequency), and locus size (the genomic region 

corresponding to a haplotype block). Because only the starting frequency (p < 1.11e-12) and 

replicate frequency (p < 2.2e-16) were significant, our data do not support a model with many 

randomly distributed targets of selection. The model explains 80% of the variance. 

Nevertheless, with non-random distribution of selection targets the results may differ.  
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Different approaches to estimate allele frequencies for inference of selection coefficient 

Our estimates of selection coefficient (s) rely on the frequency of the selected allele because 

the causal SNP is not known. We defined the frequency of a selected haplotype block/allele as 

the median frequency of all SNPs characteristic to the haplotype block/allele. By default we 

estimated s for each allele as described in Materials and Methods: Inference of selection 

coefficient. Specifically, if a specific haplotype block/allele increases in frequency after 60 

generations by at least 0.1 in a replicate we considered this as a replicate with selection 

signature. We used 0.1 AFC as a threshold because it corresponds to the upper 1% tail of the 

absolute average AFC distribution across 10 replicates in neutral simulations (Materials and 

Methods: Inference of candidate SNPs). However, to assure the estimated s is not biased by the 

method used for determining the frequency of the selected allele, different approaches were 

used to estimate the allele frequency.  

First, we set a more stringent threshold for significant frequency increase after 60 

generations: 0.2. Similar to the default method, s was estimated for all replicates with at least 

0.2 frequency increase after 60 generations, and the median s across replicates was reported 

(Fig. S4C). Second, we reasoned that s might be underestimated because the selected 

haplotype block/allele includes a broad genomic region and SNPs with different starting 

frequencies (Fig. 1, Materials and Methods: Reconstruction of the haplotype blocks (selected 

alleles)). To avoid this bias we assumed that the region with the highest s in a haplotype block, 

i.e. allele, contains the target(s) of selection: each haplotype block/allele was divided into 

several regions (clustering with stringent correlation coefficient of 0.75) and for each region the 

median s across the replicates with a frequency increase ≥ 0.1 was computed, similar to the 
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default method. The region with the largest s was chosen as the core region of the haplotype 

block/allele, and s (Fig. S4F) and the starting frequency (Fig. S4H) of the core region was used as 

the representative of the selected haplotype block/allele.  

Furthermore, we checked whether restricting the calculation of the median s to those 

replicates with significant frequency increase biases the estimate of s. Rather than reporting 

the median s, we also reported s separately for each replicate. We show the replicate-specific s 

for all approaches of estimating s (Fig. S4B, D, G: 0.1 AFC, 0.2 AFC, core region of allele, 

respectively). Overall, all methods agree very well (Fig. S4), but an AFC 0.1 is the most 

conservative method resulting in the lowest s.  

 

Simulation to test for a sweep model without linkage and a constant selection coefficient 

across replicates and time  

Simulations of a sweep model assuming no linkage and epistasis with the default parameters 

(A2 in Fig. S3) specified in Materials and Methods (the observed starting frequency: Fig. 3A, 

replicate-specific Ne: Table S5 and allele-specific s: Fig. 3B) did not provide a good fit to the 

observed heterogeneity in the experimental data (Fig. 3C). To assure that the results of 

simulations are not biased by the allele-specific starting frequency and s, additional simulations 

were performed (Fig. S3). 

Selection coefficient is a key parameter for our simulations, but it depends critically on 

the estimated frequencies. Given the uncertainty about the starting frequency of the selected 

allele, we tested the robustness of our conclusions by additional simulations using different 



25 
 

estimates of s as detailed in: SI, Different approaches to estimate allele frequencies for 

inference of selection coefficient).  

We performed simulations of a sweep model (A4 in Fig. S3) using s estimated with a 

more stringent threshold (0.2, Fig. S4C) for significant frequency increase after 60 generations 

(Fig. S5A). Furthermore, we simulated alleles using s (Fig. S4F) and starting frequency (Fig. S4H) 

estimated for the core region of alleles with 0.1 frequency increase after 60 generations (A1 in 

Fig. S3, Fig. S5B). Moreover, we simulated alleles using s and starting frequency estimates for 

the core region of alleles with 0.2 frequency increase (A3 in Fig. S3, Fig. S5C).  

20 of the 99 observed selected alleles in the experimental evolution increased in 

frequency 0.1 in one to three replicates only. These alleles have low starting frequencies (Fig. 

S7A) and the highest estimated s (Fig. S7B). This may imply that we overestimated s in these 

replicates (winner’s curse). To exclude the possibility that an overestimate of s for alleles which 

increased in frequency only in a small number of replicates affects the outcome of simulations, 

we repeated the simulations with the default parameters (the observed starting frequency: Fig. 

3A, replicate-specific Ne: Table S5 and allele-specific s: Fig. 3B) using only those 79 alleles that 

increased 0.1 in frequency in more than four replicates (A5 in Fig. S3, Fig. S5D).  

We estimated s using the frequency trajectory of replicates with 0.1 increase for the 

selected alleles. This might result in overestimation of s and bias the simulation results. To test 

whether using the frequency trajectory of all replicates for s estimation affects the simulation 

results, we performed simulations for these 79 alleles using s estimated from the median 

frequency change in all 10 replicates even if the frequency increase was less than 0.1 (A6 in Fig. 

S3, Fig. S5E). 
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Independent of the estimate of s, we could not obtain a good fit to the empirical 

replicate frequency spectrum (Fig. S5). 
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SI Figures 
A      B 

 
C      D 

 
 
Fig. S1 Increased fitness and phenotypic similarity among 10 hot-evolved replicates. A) Hot-
evolved females are more fecund than the ancestral population (ANCOVA, Tukey’s HSD test p-
value < 0.0001). The number of eggs laid over four days (two to five days after eclosion) were 
counted B) Females of 10 hot-evolved replicates are equally fecund (ANCOVA, Tukey’s HSD test, 
p-value > 0.05). Similar fat content (C) and metabolic rate (D) were measured among males of 
the hot-evolved replicates (Two-way ANOVA, Tukey’s HSD test P > 0.05). The bars show least-
squares means of the linear model and error bars depict 95% confidence levels of least-squares 
means (’lsmeans’ package(23) in R). 
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Fig. S2 Size distribution of the reconstructed haplotype blocks (selected alleles) in hot-evolved 
replicates. 50% of the haplotype blocks were smaller than 100Kb but ~25% were larger than 
1Mb.  
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Fig. S3 Different simulation scenarios used to contrast selective sweep and quantitative trait 
models. We compare different adaptive sweep and quantitative trait scenarios to the empirical 
data: selective sweep models of independent (A) and linked alleles (B) were studied as well as 
different aspects of a quantitative trait model: genetic redundancy (C) and simulations of allele 
frequency changes assuming a quantitative trait with stabilizing selection (D). Sweep models (A 
and B) were performed for 99 (A1-A4, B1, B2) and 79 alleles (increasing in more than four 
replicates, A5, A6). The selection coefficient (s) was estimated using the median frequency 

trajectories of selected alleles in replicates with  0.1 (blue circles) and  0.2 (pink circles) 
frequency increase. s was also estimated using the median frequency change in all 10 replicates 
without conditioning on a frequency increase of at least 0.1 (green circle). s and starting 
frequency of the selected alleles were estimated using either the ‘full alleles’ or only the ‘core 
region’ of selected alleles (see ‘Different approaches to estimate allele frequencies for 
inference of selection coefficient’ for definition of core region). The details of the redundancy 
model are explained in SI Methods: ‘C. Genetic redundancy model’. Simulations of a 
quantitative trait with stabilizing selection were performed with 99 loci using starting frequency 
of selected alleles (‘full allele’) and equal effect sizes of all alleles. 
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Fig. S4 Selection coefficients (s) of selected alleles using different approaches to estimate the 
frequency of a given selected allele. The median frequency of each allele (the median 
frequency of all SNPs characteristic to a haplotype block/allele) was computed and the 
frequency trajectory of replicates with ≥0.1 and ≥0.2 frequency increase until generation 60 
were used for s estimation (0.1 AFC panel: A-B, 0.2 AFC panel: C-E). The core region panel (F-H) 
shows s for the region with the highest estimated s in each allele (see ‘Different approaches to 
estimate allele frequencies for inference of selection coefficient’ for definition of core region). s 
was estimated separately for each replicate with ≥0.1/ ≥0.2 AFC and the median s across the 
replicates is reported in A,C,F) whereas in B,D,G) the calculated s for all the replicates with 
≥0.1/ ≥0.2  AFC is reported. The starting frequency of alleles with ≥0.1 and ≥0.2 frequency 
increase (E) and the core regions of selected alleles (H) is shown. The estimated s using all 
approaches agree (similar mean and median), but frequency trajectories of replicates with ≥0.1 
AFC resulted in the most conservative s estimation.  
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A. 0.2 AFC 

 
B. core region, 0.1 AFC   C. core region, 0.2 AFC 

 
D. 79 loci, 0.1 AFC    E. 79 loci, 0.1 AFC 
s: median of replicates with AFC ≥0.1 s: median of all 10 replicates 

  
Fig. S5 Simulations to test for a sweep model without linkage and a constant selection 
coefficient across replicates. The frequency distribution of replicates in which selected alleles 
(99 alleles except 79 alleles in D and E) increase in frequency (B, D, E; ≥0.1, A, C: ≥0.2) until 
generation 60. Observed data are indicated by salmon dots. The expected distribution assuming 
constant s across replicates and time and independence of alleles was obtained by computer 
simulations (see ‘Simulation to test for a sweep model without linkage and a constant s across 
replicates and time’) and is indicated in gray (mean in black). A) simulations performed with s 
estimated from frequency trajectories of replicates with AFC ≥0.2 (Fig. S4C), B,C) simulations 
performed with s estimated for the core region of each selected allele using frequency 
trajectories of replicates with AFC ≥0.1 (B, Fig. S4F) and ≥0.2 (C), D,E) simulations performed 

using only alleles that increased in frequency (≥0.1) in 4 replicates. Note that alleles identified 
in only 1-3 replicates had high s and low starting frequency and were therefore excluded from 
these simulations. D) s is estimated by median s among replicates with AFC ≥0.1. E) simulations 
are based on s estimated from the median across all replicates (even if alleles have < 0.1 AFC). 
Starting frequencies of simulated alleles match the empirical data (Fig. S4E, H). All simulations 
assume free recombination and no linkage among loci. 
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Fig. S6 Hot-evolved replicates are significantly more similar than expected by chance. 
Distribution of pairwise Jaccard indices among hot-evolved replicates (blue) and randomly 
combined alleles (green, redundancy model Fig. 4B). The counts in each data set have been 
standardized to sum up to 100. The median Jaccard index among hot-evolved replicates (0.41) 
is significantly (p<0.001) higher than the Jaccard indices of randomly combined alleles (90 
percentile = 0.37).  
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A 

 
B 

 
Fig. S7 Characteristics of selected alleles. A) starting frequency and B) selection coefficient (s) 
of the selected alleles classified by the number of replicates in which a given selected allele has 
≥0.1 frequency increase at generation 60. The selected alleles which increased in frequency 

(0.1) in only one to three replicates have low starting frequencies and the highest estimated s. 
Boxplots show the 1st and 3rd quartile of the distribution, and horizontal bars in each box 
shows the median in each category. The data of individual selected alleles are shown as 
scattered dots in each boxplot. 
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Fig. S8 Testing a sweep model with linkage and a constant selection coefficient across 
replicates. The frequency distribution of replicates in which selected alleles increase ≥0.1 in 
frequency at generation 60. Observed data are indicated by salmon dots. The expected 
distribution based on constant s across replicates and time was obtained by computer 
simulations which account for linkage (Materials and Methods) and is indicated in golden bars 
(mean in black). Simulations were performed using the starting frequency (Fig. S4H) and the 
estimated s (Fig. S4F) of the core region of selected alleles. 
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Fig. S9 Frequency of the selected alleles in hot-evolved replicates. The number of selected 
alleles with at least 0.1 allele frequency change (0.1 AFC) at generation 60 varies among 
replicates (average 53 loci). The difference among replicates still persists when selected alleles 
with at least 0.2 allele frequency change (0.2 AFC) at generation 60 (average 32.5) are 
considered. 
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SI Tables 

Table S1 Characteristics of the reconstructed haplotype blocks. 

# This table is provided as an additional Excel file 

 

 

 

 

Table S2 Enrichment of gene functions in selected alleles.  

# This table is provided as an additional Excel file 

 

 

 

 

Table S3 Enrichment of KEGG pathways in selected alleles.  

# This table is provided as an additional Excel file 
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Table S4 Absolute frequency difference of the identified P-elements in selected alleles. 

Chromosome Number Delta 

2 1 0.1778 

2 8 0.325 

2 17 0.1854 

2 19 0.1338 

2 21 0.4038 

3 3 0.1259 

3 16 0.205 

3 29 0.3062 

3 30 0.465 

3 41 0.4258 

 
Chromosome: left and right arms of chromosomes are concatenated as some haplotype blocks 
span the centromere. Number: an arbitrary number given to the haplotype block of each 
chromosome (similar to the numbers in Table S1). Delta: the absolute frequency difference 
between the frequency of the allele in any of the two replicates with highest frequency at 
generation 60 and the frequency of the P-element in those replicates. 
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Table S5 Estimated Ne in hot-evolved replicates for autosomes and the X chromosome. 

Replicate Autosomes X chromosome 

1 381 217 

2 335 280 

3 247 269 

4 255 240 

5 246 208 

6 307 274 

7 297 270 

8 244 241 

9 310 358 

10 287 268 

Mean 291 262 
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Table S6 The coverage of SNPs for all time points and replicates. 
# This table is provided as an additional Excel file 
 


