
Introduction

Below you'll find a simple walkthrough on the usage of PySight, the Python package described in this article.
(https://www.biorxiv.org/content/early/2018/05/09/316125) This notebook will also show a simple comparison between
the output of PySight and the standard (analog) output one might receive from ScanImage, a popular imaging software
used in neuroscience.

Installation

PySight is installed through pip by writing in your command line pip install pysight. It's recommended to install it
in its own virtual environment (https://conda.io/docs/user-guide/tasks/manage-environments.html). If you wish to run this
notebook on your own machine you'll also need jupyter, googledriverdownloader, dff-calc and tifffile,
installed in the same manner.

The main use of PySight is to parse .lst files generated by a multilscaler. Such a (compressed) file from a calcium
imaging session conducted at Pablo Blinder's Lab can be found here (https://drive.google.com
/open?id=11JYWiGfO7xEjAmSo36el63WGgPyGGHcN).

PySight provides a convenient GUI when running it, but it can be also run from non-interactive sessions using an existing
configuration file. Such a file, with the proper settings for the mentioned .lst file, is located in the demos folder
alongside this notebook.

Running PySight

Download the .lst file and run PySight

In [29]: from google_drive_downloader import GoogleDriveDownloader as gdd 
gdd.download_file_from_google_drive(file_id='1iytA1n2z4go3uVCwE__vIKouTKyIDjEq'
,

dest_path='./demo_calcium.lst',
unzip=False)



In [15]: cfg_file = r'demo_calcium.json'
import pysight.main
df, movie = pysight.main.run(cfg_file)

PySight can save to disk using the popular .hdf5 format, but in this case we'll use the in-memory objects created by the
analysis pipeline.

The pipeline returned two variables. df is a pandas.DataFrame containing all of the photons detected. The index
contains spatial information for the photon of its corresponding frame and line. movie is a pysight.movie.Movie()
object that defines a couple of helpful functions to work with the data. The main difference between these two variables
is that df stores the raw list of photon arrival times, while movie already contains the histogrammed data which is easily
visualized as n-dimensional stacks.

Examine the results

In [20]: import matplotlib.pyplot as plt
%matplotlib notebook

movie.show_summed()

Reading file "demo_calcium.lst"...
File read. Sorting the file according to timepatch...
Sorted dataframe created. Starting to set the proper data channel distribution
...
Channels of events found. Allocating photons to their frames and lines...
Relative times calculated. Creating Movie object...

                                                                        

======================================================= 
Outputs:
--------
The full data is present in dictionary form (key per channel) under `movie.sta
ck`, and in stacked form under `movie.summed_mem`.
Movie object created, analysis done.



show_summed() and show_stack() are two methods to display the data. show_summed used the summed_mem
attribute of movie, while show_stack uses the stack attribute.

summed_mem is the "summed stack" of the time lapse. Meaning that the time dimension was summed, leaving the rest of
the dimensions untouched. In this case our data is three-dimensional:  and . summed_mem summed over the 
dimension. The [1] index is used to access the data at the first spectral channel. Since the data is monochromatic as
the mouse was labeled with GCaMP6f only, this is the only relevant spectral channel.

If you wish to access the entire time lapse stack, you may do so with the stack attribute.

Comparison With Analog Acquisition

As noted in the article, PySight's output is superior in terms of  over analog acquisition. A time lapse acquired
using ScaImage of the same field of view in the same mouse, just before the digitally acquired data is also supplied for
comparison purposes.

Analog data setup

Both movies were acquired at 15 Hz, but we acquired a few extra frames during the digital acquisition, so we have to
correct it. We'll also display the analog data and subtract the minimal value from the analog image - this is unncessary
for PySight-generated volumes since most pixels are black, i.e. have a value of 0.

In [162]: pysight_data = movie.stack[1][:500]
print(f"PySight's background is {pysight_data.min()}.")

In [160]: gdd.download_file_from_google_drive(file_id='1Dp-0PdLtxwh2aJ4yZIOnXXEHzdtRNz3d'
,

dest_path='./si_analog_data.tif',
unzip=False)

In [154]: import tifffile
import numpy as np
import matplotlib.patches as patches
import dff_calc.df_f_calculation

x, y t t

ΔF/F

PySight's background is 0.



In [163]: analog_data = tifffile.imread('si_analog_data.tif')
analog_background = analog_data.min()
print(f"The analog background is {analog_background}.")
analog_data = analog_data.astype(np.int32) - analog_data.min()
analog_data = analog_data.astype(np.int16)
summed_analog = analog_data.sum(axis=0)
fig, ax = plt.subplots()
ax.imshow(summed_analog, cmap='gray')

As you're able to see, the field of view is identical to the first stack we've shown.

Region-of-interest analysis

Let's examine two raw traces from specific regions of interest in the image - a "black" area and a cell.

In [191]: def create_patch(data: np.ndarray, corner: tuple, size: tuple, color: str):
""" 

    Create a patch object and pull out the mean data values inside that patch.
    Returns the data object and the patch. 
    """

patch = patches.Rectangle(corner, size[0], size[1], color=color, fill=False
)

mean_data = data[:, 
corner[1]:corner[1]+size[0], 
corner[0]:corner[0]+size[1]].mean(axis=(1, 2))

return mean_data, patch

The analog background is 32401.

Out[163]: <matplotlib.image.AxesImage at 0x7fc12b9aa1d0>



In [193]: fig_roi, ax_rois = plt.subplots(1, 2)
ax_rois[0].imshow(summed_analog, cmap='gray')
ax_rois[1].imshow(movie.summed_mem[1], cmap='gray')

# Analog
# "Dark" patch
dark_corner_an = 670, 820
width, height = 50, 50
dark_trace_analog, rect_dark_an = create_patch(analog_data, dark_corner_an, 

(width, height), 'C0')

# Cell patch
cell_corner_an = 310, 537
cell_trace_analog, rect_cell_an = create_patch(analog_data, cell_corner_an, 

(width, height), 'C1')

# Digital (coordinates a bit different, and we want this to be a fair compariso
n)
dark_corner_ps = 660, 820
dark_trace_pysight, rect_dark_ps = create_patch(pysight_data, dark_corner_ps, 

(width, height), 'C0')

cell_corner_ps = 365, 537
cell_trace_pysight, rect_cell_ps = create_patch(pysight_data, cell_corner_ps, 

(width, height), 'C1')

ax_rois[0].add_patch(rect_dark_an)
ax_rois[0].add_patch(rect_cell_an)
ax_rois[1].add_patch(rect_dark_ps)
ax_rois[1].add_patch(rect_cell_ps)
ax_rois[0].set_title('Analog')
ax_rois[1].set_title('PySight')

Out[193]: Text(0.5,1,'PySight')



In [243]: # Calculate dF/F
dff_arr = np.array([dark_trace_analog, cell_trace_analog, dark_trace_pysight, c
ell_trace_pysight])
fps = 15.24 # Hz
result = dff_calc.df_f_calculation.DffCalculator(dff_arr, fps=fps).calc()



In [244]: # Display the results
time = np.arange(500) / fps
fig_trace, ax_trace = plt.subplots(2, 2)
ax_trace[0, 0].plot(time, dark_trace_analog, c='C0')
ax_trace[0, 0].set_ylabel('Raw')
dff_ana_dark = ax_trace[0, 0].twinx()
dff_ana_dark.plot(time, result[0, :], alpha=0)
dff_ana_dark.set_ylabel('dF/F')
ax_trace[0, 0].set_title('Analog')

ax_trace[1, 0].plot(time, cell_trace_analog, c='C1')
ax_trace[1, 0].set_ylabel('Raw')
ax_trace[1, 0].set_xlabel('Time [sec]')
dff_ana_cell = ax_trace[1, 0].twinx()
dff_ana_cell.plot(time, result[1, :], alpha=0, c='C0')
dff_ana_cell.set_ylabel('dF/F')

ax_trace[0, 1].plot(time, dark_trace_pysight, c='C0')
ax_trace[0, 1].set_ylabel('Raw')
ax_trace[0, 1].set_title('PySight')
dff_ps_dark = ax_trace[0, 1].twinx()
dff_ps_dark.plot(time, result[2, :], alpha=0)
dff_ps_dark.set_ylabel('dF/F')

ax_trace[1, 1].plot(time, cell_trace_pysight, c='C1')
ax_trace[1, 1].set_ylabel('Raw')
ax_trace[1, 1].set_xlabel('Time [sec]')
dff_ps_cell = ax_trace[1, 1].twinx()
dff_ps_cell.plot(time, result[3, :], alpha=0)
dff_ps_cell.set_ylabel('dF/F')

fig_trace.tight_layout()



The results are clear - dark areas in the original field of view are much darker in PySight than they are during analog
acquisition. Moreover, spike-like events are more prominent in the digitial acquistion modality. Using dff-calc, a simple
package that calculates  from raw traces, we see an order-of-magnitude difference in the  values between
the two acquisition methods.

Addendum: Verifying the Chosen Analog Gain

While the gain for the PySight acquisition was always set to 850 mV, the gain during the analog acquisition varied, and
was usually about 650 mV. Before each experiment we would find the gain that produces the highest available SNR
during imaging, and stick with it. In one of the experiments we also imaged with PySight-like gains of 850 mV in order to
verify that our choice of gain was indeed the right one. Below you'll find examples justifying this choice.

In [240]: an_850 = tifffile.imread(r'./FOV2_850gain_00001.tif')[:500]
fig_850, ax_850 = plt.subplots()
an_850_mean = an_850.mean(axis=0)
ax_850.imshow(an_850_mean, cmap='gray')
ax_850.set_title('Analog, 850 mV Gain')

ΔF/F ΔF/F

Out[240]: <matplotlib.image.AxesImage at 0x7fc1244d2550>



In [212]: an_650 = tifffile.imread(r'./FOV2_650gain_00002.tif')[:500]
fig_650, ax_650 = plt.subplots()
an_650_mean = an_650.mean(axis=0)
ax_650.imshow(an_650_mean, cmap='gray')
ax_650.set_title('Analog, 650 mv Gain')

In [271]: ps = tifffile.imread(
r'./ps_fov2_comp.tif')[:500]

fig_ps, ax_ps = plt.subplots()
ps_mean = ps.mean(axis=0)
ax_ps.imshow(ps_mean, cmap='gray')
ax_ps.set_title('PySight, Standard 850 mV Gain')

Out[212]: <matplotlib.image.AxesImage at 0x7fc125c04a90>

Out[271]: Text(0.5,1,'PySight, Standard 850 mV Gain')



In [369]: cell1 = (679, 700)
cell1_p = (675, 695)
cell2 = (600, 695)
cell2_p = (618, 688)
cell3 = (900, 935)
cell3_p = (896, 920)
cell4 = (403, 168)
cell4_p = (457, 161)
size = (40, 40)

cell1_650, rect1_650 = create_patch(an_650, cell1, size, 'C0')
cell1_850, rect1_850 = create_patch(an_850, cell1, size, 'C0')
cell1_ps, rect1_ps = create_patch(ps, cell1_p, size, 'C0')
cell2_650, rect2_650 = create_patch(an_650, cell2, size, 'C1')
cell2_850, rect2_850 = create_patch(an_850, cell2, size, 'C1')
cell2_ps, rect2_ps = create_patch(ps, cell2_p, size, 'C1')
cell3_650, rect3_650 = create_patch(an_650, cell3, size, 'C2')
cell3_850, rect3_850 = create_patch(an_850, cell3, size, 'C2')
cell3_ps, rect3_ps = create_patch(ps, cell3_p, size, 'C2')
cell4_650, rect4_650 = create_patch(an_650, cell4, size, 'C3')
cell4_850, rect4_850 = create_patch(an_850, cell4, size, 'C3')
cell4_ps, rect4_ps = create_patch(ps, cell4_p, size, 'C3')



In [370]: fig_an_comp, ax_an_comp = plt.subplots(1, 3)
ax_an_comp[0].imshow(an_650_mean, cmap='gray')
ax_an_comp[1].imshow(an_850_mean, cmap='gray')
ax_an_comp[2].imshow(ps_mean, cmap='gray')
ax_an_comp[0].add_patch(rect1_650)
ax_an_comp[1].add_patch(rect1_850)
ax_an_comp[2].add_patch(rect1_ps)
ax_an_comp[0].add_patch(rect2_650)
ax_an_comp[1].add_patch(rect2_850)
ax_an_comp[2].add_patch(rect2_ps)
ax_an_comp[0].add_patch(rect3_650)
ax_an_comp[1].add_patch(rect3_850)
ax_an_comp[2].add_patch(rect3_ps)
ax_an_comp[0].add_patch(rect4_650)
ax_an_comp[1].add_patch(rect4_850)
ax_an_comp[2].add_patch(rect4_ps)

ax_an_comp[0].set_title('650 mV Gain')
ax_an_comp[1].set_title('850 mV Gain')
ax_an_comp[2].set_title('PySight')

In [371]: # Calculate dF/F
dff_arr_comp = np.array([cell1_650, cell1_850, cell1_ps,

cell2_650, cell2_850, cell2_ps,
cell3_650, cell3_850, cell3_ps,
cell4_650, cell4_850, cell4_ps])

fps = 15.24 # Hz
result_comp = dff_calc.df_f_calculation.DffCalculator(dff_arr_comp, fps=fps).ca
lc()

In [364]: def show_trace(ax, x, y, dff, c, row_idx, col_idx):
ax[row_idx, col_idx].plot(x, y, c=c)
ax[row_idx, col_idx].set_ylabel('Raw')
ax2 = ax[row_idx, col_idx].twinx()
ax2.plot(x, dff[row_idx*3 + col_idx, :], alpha=0)
ax2.set_ylabel('dF/F')

Out[370]: Text(0.5,1,'PySight')



In [372]: # Display the results
time = np.arange(500) / fps
fig_an, ax_an = plt.subplots(4, 3)

show_trace(ax_an, time, cell1_650, result_comp, 'C0', 0, 0)
show_trace(ax_an, time, cell1_850, result_comp, 'C0', 0, 1)
show_trace(ax_an, time, cell1_ps, result_comp, 'C0', 0, 2)

show_trace(ax_an, time, cell2_650, result_comp, 'C1', 1, 0)
show_trace(ax_an, time, cell2_850, result_comp, 'C1', 1, 1)
show_trace(ax_an, time, cell2_ps, result_comp, 'C1', 1, 2)

show_trace(ax_an, time, cell3_650, result_comp, 'C2', 2, 0)
show_trace(ax_an, time, cell3_850, result_comp, 'C2', 2, 1)
show_trace(ax_an, time, cell3_ps, result_comp, 'C2', 2, 2)

show_trace(ax_an, time, cell4_650, result_comp, 'C3', 3, 0)
show_trace(ax_an, time, cell4_850, result_comp, 'C3', 3, 1)
show_trace(ax_an, time, cell4_ps, result_comp, 'C3', 3, 2)

ax_an[0, 0].set_title('650 mV')
ax_an[0, 1].set_title('850 mV')
ax_an[0, 2].set_title('PySight (850 mV)')

ax_an[3, 0].set_xlabel('Time[sec]')
ax_an[3, 1].set_xlabel('Time [sec]')
ax_an[3, 2].set_xlabel('Time [sec]')

fig_an.tight_layout()


