
S1 Text: Additional text and computational examples for

“On an algorithmic definition for the components of the minimal cell”

OCTAVIO MARTÍNEZ
AND M. HUMBERTO REYES-VALDÉS

Abstract. Here we present additional details and discussion of the C2E algorithm applied to the cases
of the RNA polymerase and streptomycin synthesis interactomes (SIs). Additionally, we demonstrate the
functions and data of our R package ‘InterPlay’ to work with SI and determine essential structures. The
algorithms implemented in the InterPlay package are exemplified and explained in detail, and plotting of
interactome networks are illustrated with the use of the ‘igraph’ R package (Csardi and Nepusz, 2006).
The computational examples in this appendix can be followed performing a step by step analysis in R,
or read without following the R examples and focusing in the results for a better understanding of the
procedures.

Contents
S1-1. The C2E algorithm applied to the RNA polymerase SI 1
S1-2. The C2E algorithm applied to the streptomycin SI 2
S1-3. Implications of the C2E algorithm 4
S1-4. Notes and prerequisites 5
S1-5. Computational representation of synthesis interactomes (SIs) 6
S1-5.1. Latent sets in an SI 7
S1-5.2. The ‘condensed to expanded’ (C2E) algorithm 8
S1-5.3. Avoiding infinite loops in the search for expanded formulae 12
S1-6. Distinguishing essential cell elements in SIs 13
S1-6.1. Analysis of a more realistic SI 21
S1-7. Visualizing SI relations with graph theory 33
S1-7.1. ‘binding’ and ‘synthesis’ networks from the RNA polymerase SI 33
S1-8. Conclusions and perspectives 43
References 43

S1-1. The C2E algorithm applied to the RNA polymerase SI

In Table 2 of the main text we presented the SI for the RNA polymerase, denoted as ‘pol’. Here we
present the results of the application of the C2E algorithm to the components of ‘pol’, showing that the
expanded formulae for all components of ‘pol’, including ‘pol’ itself are recursive.

Table S1-1 presents the results of applying the C2E algorithm to all the elements of the set

Si = {2a, a, b, ba, bp, bpb, o, pol, t.a, t.b, t.bp, t.o}
i.e., to the internal elements defined by the SI in Table 2 of the main text for the RNA polymerase,
pol.

By inspecting each one of the rows of Table S1-1 we confirm that in all cases the named element (in
column ‘Name’) appears, once or more times in the expanded formula presented in column ‘Expanded’ of
each corresponding row. For example, for ‘pol’, the corresponding expanded formula is <<< g.o, pol >
, rib >,<< bp, b >,< a, a >>> (4th row in Table S1-1), has ‘pol’ as operand in the binary operator

Date: May 21, 2018.

1

2 Appendix: Computational examples.

Table S1-1. Results of applying the ‘condensed to expanded’ (C2E) algorithm
for each element of Si in the RNA polymerase SI (See Table 2 in main text).

Name Condensed Expanded
bpb < bp, b > <<< g.bp,<< t.o, rib >,< bpb, 2a >>>, rib >,<< g.b,<< t.o, rib >,<

bpb, 2a >>>, rib >>
2a < a, a > <<< g.a,<< t.o, rib >,< bpb, 2a >>>, rib >,<< g.a,<< t.o, rib >,<

bpb, 2a >>>, rib >>
ba < bpb, 2a > <<<< g.bp,< o, ba >>, rib >,<< g.b,< o, ba >>, rib >>,

<<< g.a,< o, ba >>, rib >,<< g.a,< o, ba >>, rib >>>
pol < o, ba > <<< g.o, pol >, rib >,<< bp, b >,< a, a >>>
t.bp < g.bp, pol > < g.bp,<<< g.o,< o, ba >>, rib >,<<< t.bp, rib >,< t.b, rib >>,<<

t.a, rib >,< t.a, rib >>>>>
t.b < g.b, pol > < g.b,<<< g.o,< o, ba >>, rib >,<<< t.bp, rib >,< t.b, rib >>,<<

t.a, rib >,< t.a, rib >>>>>
t.a < g.a, pol > < g.a,<<< g.o,< o, ba >>, rib >,<<< t.bp, rib >,< t.b, rib >>,<<

t.a, rib >,< t.a, rib >>>>>
t.o < g.o, pol > < g.o,<< t.o, rib >,< bpb, 2a >>>
bp < t.bp, rib > << g.bp,<<< g.o, pol >, rib >,<< bp, b >,< a, a >>>>, rib >
b < t.b, rib > << g.b,<<< g.o, pol >, rib >,<< bp, b >,< a, a >>>>, rib >
a < t.a, rib > << g.a,<<< g.o, pol >, rib >,<< bp, b >,< a, a >>>>, rib >
o < t.o, rib > << g.o,< o, ba >>, rib >

Notes: ‘Name’ - Name of each one of the elements in the set of internal elements, Si, of the SI for the
RNA polymerase (pol; see Table 2 in the main text for the keys of the named elements). ‘Condensed’ -
Condensed formula for the element in ‘Name’, given by the binary operator; see column ‘Binary operator’
in Table 2 in the main text. ‘Expanded’ - Expanded formula found for the corresponding element in
‘Name’; the result of the C2E algorithm applied to that structure.

< g.o, pol >. Also note that the expanded expression for pol given in this row is different to the one
that we previously found ‘by hand’ in equation 3 of the main text. This is due to the fact that the C2E
algorithms exits as soon as one term equal to the input name is found in the expanded formula. This
do not alter the fact that all the expanded formulae found by the C2E algorithm and presented in Table
S1-1 are recursive. The classification of a formula as recursive or non recursive can be automatically
computed.

S1-2. The C2E algorithm applied to the streptomycin SI

To give examples of formulae that are not recursive, we present the synthesis of streptomycin, a sec-
ondary metabolite exhibiting antibiotic activities, and which is produced by bacteria in the in the genus
Streptomyces (Schatz et al., 1944). The SI for streptomycin synthesis was summarized from (Flatt and
Mahmud, 2007), and it is presented in Table S1-2. Table S1-3 presents the full names for the elements
shown in the ‘Name’ column of Table S1-2.

Note that the set of external elements for the SI in Table S1-2, labeled as Se in columns ‘1st Set’ and ‘2nd
Set’, gives the ‘root ’ of the SI and includes apart from the ribosome (rib) and the RNA polymerase (pol),
three secondary metabolites, (28), (34) and (40), corresponding to ‘Streptidine 6-phosphate’, ‘dTDP-L-
dihydrostreptose bound to StrH’ and ‘NDP-N-methyl-L-glucosamine’, respectively. In contrast with the
essential elements rib and pol, these secondary metabolites are not essential for cell survival.

Applying the C2E algorithm to the SI in Table S1-2 we obtain the expanded formulae for each one of the
internal elements of that interactome. Those formulae are shown in Table S1-4.

2

3 Appendix: Computational examples.

Table S1-2. Normalized synthesis Interactome (SI) for streptomycin (STR).

Name Binary Operator 1st Set 2nd Set Type Name 1st Type 2nd Type
t.StrH 〈g.StrH, pol〉 G Se transcript gene enzyme
StrH 〈t.StrH, rib〉 Si Se peptide transcript ribosome
t.DeH 〈g.DeH, pol〉 G Se transcript gene enzyme
DeH 〈t.DeH, rib〉 Si Se enzyme transcript ribosome
t.StrK 〈g.StrK, pol〉 G Se transcript gene enzyme
StrK 〈t.StrK, rib〉 Si Se enzyme transcript ribosome
(a.34) 〈(34), StrH〉 Se Si metabolite metabolite peptide
(35) 〈(a.34), (28)〉 Si Se metabolite metabolite metabolite
(41) 〈(35), (40)〉 Si Se metabolite metabolite metabolite
(42) 〈(41), DeH〉 Si Si metabolite metabolite enzyme
STR 〈(42), StrK〉 Si Si metabolite metabolite enzyme

Notes: For meaning of the element names see Table S1-3. Gene names begin with
‘g.’ while transcript names begin with ‘t.’. Columns ‘1st Set’ and ‘Set 2nd’ give
the sets in which the first and second operands of ‘Binary operator’ exist. Columns
‘Type Name’, ‘1st Type’ and ‘2nd Type’ give the types of elements for column
‘Name’, and the first and second operands of ‘Binary operator’, respectively.

Table S1-3. Names of elements involved in the synthesis of the secondary
metabolite streptomycin (STR).

Name Full Name
rib Ribosome.
STR Streptomycin.
pol RNA polymerase (RNA-pol).
StrH StrH protein predicted to mediate the ligation of (28) with (34).
DeH Dehydrogenase involved in the step from (42) to STR.
StrK Enzyme streptomycin phosphatase.
(28) Streptidine 6-phosphate.
(34) dTDP-L-dihydrostreptose.
(a.34) dTDP-L-dihydrostreptose bound to StrH.
(35) O-1,4-α-L-dihydrostreptocyl-streptidine 6-phosphate.
(40) NDP-N-methyl-L-glucosamine.
(41) Dihydrostreptomycin 6-phosphate.
(42) Streptomycin 6-phosphate.

Notes: Main elements involved in the synthesis of streptomycin (STR),
compiled and simplified from Flatt and Mahmud (2007). Column ‘Name’
gives the shorten element identifier, as used in the ‘Name’ column of Table
S1-2, while column ‘Full name’ gives the biochemical designation of the
elements.

In the first row of Table S1-4, showing the condensed and expanded formulae for the transcript of the
protein StrH, ‘t.StrH’, we note that both formulae, condensed and expanded, are identical. This happens
in the C2E algorithm when no substitutions are possible to expand the condensed formula. But more
interestingly, it can be corroborated that none of the expanded formulae in the 11 rows of Table S1-4
presents within its operands the element being defined, i.e., none of the expanded formula for the synthesis
of streptomycin components is recursive. In particular, the last row, showing the expanded formula for

3

4 Appendix: Computational examples.

Table S1-4. Results of applying the ‘condensed to expanded’ (C2E) algorithm
for each element of Si in the streptomycin (STR) SI (Table S1-2).

Name Condensed Expanded
t.StrH < g.StrH, pol > < g.StrH, pol >
StrH < t.StrH, rib > << g.StrH, pol >, rib >
t.DeH < g.DeH, pol > < g.DeH, pol >
DeH < t.DeH, rib > << g.DeH, pol >, rib >
t.StrK < g.StrK, pol > < g.StrK, pol >
StrK < t.StrK, rib > << g.StrK, pol >, rib >
(a.34) < (34), StrH > < (34), << g.StrH, pol >, rib >>
(35) < (a.34), (28) > << (34), << g.StrH, pol >, rib >>, (28) >
(41) < (35), (40) > <<< (34), << g.StrH, pol >, rib >>, (28) >, (40) >
(42) < (41), DeH > <<<< (34), << g.StrH, pol >, rib >>, (28) >, (40) >,<<

g.DeH, pol >, rib >>
STR < (42), StrK > <<<<< (34), << g.StrH, pol >, rib >>, (28) >, (40) >,<<

g.DeH, pol >, rib >>,<< g.StrK, pol >, rib >>

Notes: ‘Name’ - Name of each one of the elements in the set of internal elements, Si, of the SI for in the
streptomycin (STR) SI (Table S1-2; see Table S1-3 for the keys of the named elements). ‘Condensed’ -
Condensed formula for the element in ‘Name’; binary operator, see also Table 2 in main text. ‘ Expanded’ -
Expanded formula found for the corresponding element in ‘Name’; the result of the C2E algorithm applied
to that structure.

streptomycin (STR), do not include this compound among the components needed for its synthesis, i.e.,
‘to synthesize streptomycin the cell do not need preexistent molecules of streptomycin’.

S1-3. Implications of the C2E algorithm

As shown in the main text, the C2E algorithm can give a unequivocal classification of essentiality only
for internal elements included into the corresponding Si set.

As noted in the main text, essentiality rule ER1 could classify as essential only elements in Si, while
ER2 could also include as essential elements in G or Se. A first example can be seen in Table S1-1
that present the expanded formulae for the elements of Si in the RNA polymerase. All formulae in the
‘Expanded’ column of this table include within its operands the corresponding element in the ‘Name’
column; i.e., all the elements in the ‘Name’ column have a recursive formula and thus by ER1 all of
them are essential. By applying ER2 we found that also all non internal elements named at the SI, say
the ones in G = { g.bp, g.b, g.o, g.a } (the genes for each one of the RNA polymerase subunits),
as well as the only external element named in the SI, Si = { rib }, are classified as essential, because
they appear as operands in one or more of the expanded formulae in column ‘Expanded’. In contrast,
none of the elements that intervene in the synthesis of streptomycin (‘STR’), which expanded formulae are
shown in Table S1-4, is recursive and thus none is classified as essential. Even when the ribosome (‘rib’)
–an intrinsically essential element of the cell, appears as operand in various of the expanded formulae of
Table S1-4, its essentiality is not evident given that none of the internal structures of this SI is classified
as essential and thus there is no information to judge its essentiality (by either rule ER1 or ER2). This
shows the dependence of our essentiality rules on the quantity of information given by the SI analyzed.
In conclusion, elements that are not classified as essential by the information in an SI could be in fact
essential for cell functioning –but the SI is not giving enough information for such classification. But in
contrast, if an element is classified as essential, such conclusion is definite; no further information added
to the SI could change such judgment.

4

5 Appendix: Computational examples.

With reference to the essentiality rule ER3, we could give a mathematical representation for this rule by
defining the genome replication ‘operation’, say D(G)⇒ 2G, implying with this symbolic representation
that the complete genome, ‘G’ will be duplicated. Furthermore, the synthesis of all the elements needed
to perform this operation in a given cell can be written as a list of binary operators; an SI, say SI∗∗,
containing the synthesis definition for all elements necessary for genome replication. Then, ER3 can be
trivially rewritten as

Essentiality rule 3’ (ER3’): Essentiality of genome replication machinery.:
s∗ is an essential element for genome replication if the absence of s∗ impedes the D(G) ⇒ 2G
operation.

nevertheless, this rule does not give any algorithmic guideline to discover the elements of such group
from a computational manipulation –as did rules ER1 and ER2, thus, we must employ experimental
methods to search for such elements, as done, by different approaches and in different organisms, as done
for example in (Gerdes et al., 2003; Kobayashi et al., 2003; Berquist et al., 2007; Blomen et al., 2015;
Wang et al., 2015).

S1-4. Notes and prerequisites

The remaining part of this document corresponds to computational examples for “On an algorithmic
definition for the components of the minimal cell”, and can be read in two ways, say, concentrating in the
concepts and results presented, disregarding computational details –presented as examples with the R1

(R Core Team, 2016) package ‘InterPlay’, or additionally following the step by step R examples.

In the latter case you must install ‘InterPlay’ using the supplementary file ‘S1 Binary’ included in
the manuscript “On an algorithmic definition for the components of the minimal cell” (the file corre-
sponding to ‘S1 Binary’ was named S1Binary.tar.gz, and for installation that file must be present
in your R working directory). To install the package you could use the command ‘R CMD INSTALL

S1Binary.tar.gz’ in your operative system command window, or follow instructions at Install Packages
from Repositories or Local Files. If you have any problem with the installation please send an e-mail to
Octavio Martinez, including the word ‘InterPlay’ in the subject.

You will also need to install the R package ‘igraph’ (Csardi and Nepusz, 2006) and include in your
R environment the code in the supplementary file ‘S2 Text’ (which was uploaded to PLOS ONE as
S2Text.txt). To do this you must copy that file into your R working directory and type ‘source("S2Text.txt")’
at the R prompt (‘>’).

R commands and output are given here in numbered boxes contained within remarks. In these boxes
(see BOX 1 below) the R prompt, ‘>’, is included, but, if reproducing the commands in R this prompt
must be excluded; you can copy and paste the command to obtain the output which is shown within
the box. We assume that you are familiar with R basic use. If you want to follow and reproduce the R
commands given in the numbered BOXes, it is important that you do so in the same order than such boxes
are presented (BOX 1, BOX 2, · · · , etc.), because in some cases results of a box will depend on operations
performed in a previous one.

In case of comments or troubles about our package, please send an e-mail to Octavio Martinez, including
the word ‘InterPlay’ in the subject.

BOX 1

Loading ’InterPlay’ (you must have the InterPlay package installed!)

> library(InterPlay)

> ? InterPlay # Start (and browse) the help for the package.

1 Web links which you can follow are given in blue.

5

https://www.r-project.org/
https://stat.ethz.ch/R-manual/R-devel/library/utils/html/install.packages.html
https://stat.ethz.ch/R-manual/R-devel/library/utils/html/install.packages.html
mailto:octavio.martinez@cinvestav.mx
http://igraph.org/r/
mailto:octavio.martinez@cinvestav.mx

6 Appendix: Computational examples.

Additionally you may include the functions in file "S2Text.txt"

After putting that file into your working directory type

> source("S2Text.txt")

To visualize graphs produced from SIs you need also

to install the "igraph" R package, and then type

> library(igraph)

###################################### END BOX 1 #####################################

S1-5. Computational representation of synthesis interactomes (SIs)

As discussed in the main text, binary operators of the form ‘〈sia, sib〉 ⇒ si’ can be used to represent the
synthesis of cell element ‘si’ from the previously existent elements ‘sia’ and ‘sib’, which are the operands
of the binary operator. Here a synthesis interactome (SI) is defined as a finite collection of different
binary operators which summarizes the synthesis of one or more cell elements as function of other. Table
S1-5 (as Table 1 in main text) shows a putative SI with k rows.

Table S1-5. The synthesis interactome (SI).

Name Binary operator
s1 〈s1a, s1b〉
s2 〈s2a, s2b〉
· · · · · ·
si 〈sia, sib〉
· · · · · ·
sk 〈ska, skb〉

The conditions for a well formed SI are that i) all the names in column ‘Name’ must be different and
ii) All operators in column ‘Binary operator’ must also be different (see legend of Table 1 as well as
‘Mathematical addendum’ in main text). (i) implies that the synthesis of a given structure, say, s∗ is
defined in a unique way and (ii) implies that a binary operator always result in the synthesis of the same
element. SIs can be represented in R (or other computer environments) as tables with three columns,
containing the names of elements (column ‘Name’ in Table S1-5; elements ‘si’), and two columns for the
left and right hand side of each binary operator, say, the ‘sia’ and ‘sib’ in Table S1-5, and k rows –one for
each i = 1, 2, · · · , k binary operator. BOX 2 shows examples of tables that do not represent well formed
SIs.

BOX 2

Example of a data.frame that does not fulfill (i)

> temp <- data.frame(c("a", "a"), c("b", "c"), c("d", "e"), stringsAsFactors=F)

> names(temp) <- c("name", "o1", "o2")

> temp

name o1 o2

1 a b d

2 a c e

See the help for function "normalize.SI"

> ? normalize.SI

6

7 Appendix: Computational examples.

Check if "temp" is a valid SI

> normalize.SI(temp)

Error in normalize.SI(temp) :

Not valid interactome: Repeated names of structures (’name’)

Example of a data.frame that does not fulfill (ii)

> temp <- data.frame(c("a", "f"), c("b", "c"), c("c", "b"), stringsAsFactors=F)

> names(temp) <- c("name", "o1", "o2")

> temp

name o1 o2

1 a b c

2 f c b

> normalize.SI(temp)

Error in normalize.SI(temp) :

Not valid interactome: Rows 1 and 2 have the same binary operator!

NOTE: this last result is given because even when rows 1 and 2 of temp are

"different" they represent the same binary operator, because binary operators

are commutative, i.e., <b, c> = <c, b>.

###################################### END BOX 2 #####################################

S1-5.1. Latent sets in an SI. In Fig. 1 of the main text we presented a Venn diagram with the main
subsets of elements cell. An SI will have information about some of such components, and here we dente
as S the set of all elements present in a given SI. We can always break down S into the disjoint sets G
(the set of genomic elements), Si (the set of internal elements) and Se (the set of external elements),
where

S = G ∪ Si ∪ Se

and
G ∩ Si = φ; G ∩ Se = φ; G ∩ Se = φ

Any well formed SI will contain some information about the elements that form these sets, as exemplified
in BOX 3.

BOX 3

> ? dummy1.SI # Help for this small interactome.

> data(dummy1.SI) # Load the dataset

> dummy1.SI # Shows the dataset

name o1 o2

1 a b c

2 b a d

3 f e h

4 g f f

5 i a b

Now we will ’normalize’ dummy1.SI and obtain information

about the sets defined within it

> ? normalize.SI # Help for that function

> normalize.SI(SI = dummy1.SI, give.sets = TRUE)

$SI

name o1 o2 set.o1 set.o2 type.n type.o1 type.o2 structure

1 a b c Si Se

2 b a d Si Se

7

8 Appendix: Computational examples.

3 f e h Se Se

4 g f f Si Si

5 i a b Si Si

$sets

$sets$G

character(0)

$sets$Si

[1] "a" "b" "f" "g" "i"

$sets$Se

[1] "c" "d" "e" "h"

###################################### END BOX 3 #####################################

From BOX 3 we can note that ‘normalize.SI’, aside checking that the SI is a valid interactome, add
columns set.o1, set.o2, type.n, type.o1, type.o2 and structure to the corresponding data.frame.

The meaning of these columns and the sets infer from the SI by ‘normalize.SI’ are presented in Table
S1-6. All but the first three columns (name, o1 and o2) are optional in the initial input of a pre-formatted
SI; columns set.o1, set.o2, type.n, type.o1, type.o2 and structure will be added in the output
(when they are not already present in the input), and columns set.o1 and set.o2 will be automatically
filled by ‘normalize.SI’ with the rules given in Table S1-6.

For real or realistic SIs the input of the columns could be performed in an spreadsheet program (as Excel
or alike) and imported into R. In such case, extra columns as ‘Comments’ or other could be added for the
researcher reference; however, such columns will be deleted and ignored by the InterPlay functions (for
an example see help for dataset ‘dummy3.SI’ and BOX 4 below).

BOX 4

> ? dummy3.SI # See help for that dataset.

> data(dummy3.SI)

> dummy3.SI # See the dataset (output not shown!)

> normalize.SI(dummy3.SI, give.sets = TRUE) # Output not shown!

> ? data(int.SI) # See help for that dataset.

> data(int.SI) # An integrated SI.

> head(int.SI) # Browse the first 6 lines of the SI (output not shown)

int.SI[int.SI$structure == ’pol’,] # See all columns that define strucutre "pol"

(output not shown)

###################################### END BOX 4 #####################################

S1-5.2. The ‘condensed to expanded’ (C2E) algorithm. Apart from fulfilling conditions (i) and
(ii), ‘interesting’ SIs must contain compressed information about the synthesis of elements, that could be
extracted by a chain of substitutions on the binary operators. A valid substitution on binary operators
is defined by

• Assume that a row of an SI contains ‘Name’ = a and ‘Binary operator’ = < b, c >.

• If there exist other SI row that contains ‘Name’ = b and ‘Binary operator’ = < d, e > then a
‘valid substitution’ for a in the formula < b, c > is given by << d, e >, c > and

• If there exist other SI row that contains ‘Name’ = c and ‘Binary operator’ = < f, g > then a
‘valid substitution’ for a in the formula < b, c > is given by < b,< f, g >>.

8

9 Appendix: Computational examples.

Table S1-6. Contents in a normalized SI.

First component (named ‘SI’ or unique component when ‘give.sets = FALSE’)
Column Content
name A character vector with the names of elements defined in the SI (the set of internal elements

Si)
o1 A character vector with the left hand side operand of the binary operator for element in

column name.
o2 A character vector with the right hand side operand of the binary operator for element in

column name.
set.o1 A character vector with the name of the set to which o1 belongs.
set.o2 A character vector with the name of the set to which o2 belongs.
type.n A character vector with the type of component that the element on column name has.
type.o1 A character vector with the type of component that the element on column o1 has.
type.o2 A character vector with the type of component that the element on column o2 has.
structure A character vector with the name of the structure defined in the SI.

Second component (a list with 3 sets)
Component Content
G A character vector with the names in the set G (when the name of the element begins

with ‘g.’).
Si A character vector with the names in the set Si (these are the same elements that appear

in the column ‘name’).
Se Character vector with the names in the set Se (elements in columns ‘o1’ or ‘o2’ which are

not in G or Se).

Note that applying the definitions we can obtain an ‘expanded’ formula for a given by << d, e >,<
f, g >>⇒ a, etc. (see also ‘Mathematical addendum’). In fact, the C2E algorithm implements nested
substitutions to ‘expand’ formulae for all the elements in the column ‘Name’ of a given SI. An example
is presented in BOX 5.

BOX 5

> data(dummy1.SI) # Load the dataset

> dummy1.SI # Shows (again) the dataset

name o1 o2

1 a b c

2 b a d

3 f e h

4 g f f

5 i a b

> ? C2E # Help for function implementing the "Condensed to Expanded algorithm".

> C2E(s="a", SI=dummy1.SI) # Expands the formula ’<b, c>’

[1] "<<a,d>,c>"

> C2E(s="a", SI=dummy1.SI) # Expands the formula ’<b, c>’

[1] "<<a,d>,c>"

> ? expandAll # A wraper for C2E to try to expand all elements.

> expandAll(dummy1.SI)

name condensed expanded

1 a <b,c> <<a,d>,c>

2 b <a,d> <<b,c>,d>

3 f <e,h> <e,h>

4 g <f,f> <<e,h>,<e,h>>

9

10 Appendix: Computational examples.

5 i <a,b> UNDECIDED

What happened with the expansion of the formula for ’i’?

Try to expand the formula for ’i’ (’<a,b>’)

a) Print steps and use a maximum of 5 cycles of substitution

C2E(s="i", SI=dummy1.SI, print.steps = TRUE, max.cycles = 5)

[1] "1 - i"

[1] "2 - <a,b>"

[[1]]

[1] "UNDECIDED"

[[2]]

[1] "<<<<<<<a,d>,c>,d>,c>,d>,c>,<<<<<<b,c>,d>,c>,d>,c>,d>>"

It is evident that C2E fell into an infinite loop;

see that by increasing the max.cycles

> C2E(s="i", SI=dummy1.SI, max.cycles = 10)

[[1]]

[1] "UNDECIDED"

[[2]]

[1] "<<<<<<<<<<<<b,c>,d>,c>,d>,c>,d>,c>,d>,c>,d>,c>,<<<<<<<<<<<a,d>,c>,d>,c>,d>,c>,d>

,c>,d>,c>,d>>"

###################################### END BOX 5 #####################################

From BOX 5 we can easily ‘guess’ how the C2E algorithm works. In fact, given an initial formula
for an element in the form of a binary operator, C2E greedily makes all possible substitutions in the
initial formula, by iteratively reviewing the rows of the SI. This is explained in detail and illustrated by
pseudo-code in the following paragraphs.

Expressions for binary operators in Table S1-5, that here we denote as ‘C(si)’ (column ‘Binary operator’
in Table S1-5), are ‘condensed’, in the sense of having only two operands, sia and sib. Assume that by
inspecting Table S1-5 we find that the formula for sia (only if sia ∈ Si) is equal to C(sia) = 〈s′ia, s′ib〉.
Then we can substitute the value of C(sia) in the original expression for C(si) to obtain a new expression
for C(si), say C1(si) = 〈〈s′ia, s′ib〉, sib〉, where the subindex 1 in C denotes that we have carried out one
substitution to obtain such formula. We could repeat the described substitution process to obtain more
‘expanded’ formulae, until we exhaust the possibilities for substitution. By iterating the substitution
process we will always obtain ‘well formed strings’, which can be converted into the original condensed
formula. To formalize the substitution process we define as E(X) the set of operands that exist into
a well formed formula. For example, assume that at some point in the substitution process we find an
expression X given by

X = 〈〈s3, s4〉, 〈s5, 〈〈s3, s4〉, s2〉〉〉
then the set E(X) will be given by all the distinct operands found in expression X, that is

E(X) = {s2, s3, s4, s5}

Also, we define the operation ‘S(X)’ as the substitution in X of all elements of Si that exist in the string
X by the corresponding binary operators. Thus for example, having X as above, and assuming that we
find that only s2 ∈ Si and that the formula for s2 in the interactome is ‘〈sx, sz〉’ then we obtain

10

11 Appendix: Computational examples.

S(X) = 〈〈s3, s4〉, 〈s5, 〈〈s3, s4〉, 〈sx, sz〉〉〉〉

With this notation we can define an algorithm to find an ‘expanded’ formula from a ‘condensed’ one,
say the C2E algorithm (from ‘condensed’ to ‘expanded’). C2E is presented in the following pseudo-code,
implemented into ‘InterPlay’ as function ‘C2E’.

The C2E (C(s) V E(s)) algorithm

1) - INPUT ‘s’ the element name (s ∈ Si), ‘In’, the interactome, and ‘m.c’, the maximum of cycles
(‘loops’) of nested substitutions allowed.

2) - SET f = C(s), c.c = 0 and E = E(f).

3) - IF s ∈ E THEN RETURN f as E(s).

4) - SET nf = S(f).

5) - WHILE nf 6= f DO

{

5.1) - SET c.c = c.c+ 1 and E = E(nf)

5.2) - IF c.c > m.c RETURN LIST(‘UNDECIDED’, nf)

5.3) - IF s ∈ E RETURN nf as E(s).

5.4) - SET f = nf and nf = S(f)

}

6) - RETURN nf as E(s).

In the C2E algorithm, steps 3 and 5.3 are set to avoid a primary infinite loop. Such primary infinite loop
will happen if the formula defining s, say f or nf , contains s itself within the operands of the formula.
If that is the case, i.e., if s ∈ E, then if step 5.3 is not included, then the substitutions will continue ad
infinitum within the loop defined in step (5) of the C2E algorithm. Note that steps 3 and 5.3 will always
give as output a recursive structure.

There is a second possibility for an infinite loop within this algorithm. This secondary infinite loop will
happen always that, at any point, the expanded formula for an element has within its operands a recursive
structure. In such case the C2E algorithm will keep substituting the recursive element ad infinitum. To
scape such possibility, only a maximum number of nested substitutions, ‘m.c’, is allowed. If that number
of loops is reached within the ‘WHILE’ loop (5), then C2E return at step 5.2 a list with two components:
The word ‘UNDECIDED’ and the current formula for the structure, nf . In the next section we will see
how to deal with that undecided formulae.

If the possible substitutions in a formula had been exhausted, then the nf will not change in two successive
evaluations of the ‘WHILE’ loop defined in step (5) and the condition ‘nf 6= f ’ will be false (i.e., in that
case ‘nf = f ’) and thus the loop is exited and the final nf is output at step (6).

Thus, the possible results of the C2E algorithm are i) An expanded recursive formula, when the out-
put occurs at steps 3 or 5.3; ii) An ‘UNDECIDED’ formula when the output occurs at 5.2 or, iii) A
non recursive expanded formula when the output occurs at 6). In BOX 5 we saw an example (with
‘dummy1.SI’) in which the results of applying ‘C2E’ for each row of the SI produced the 3 different output;
examining the results of ‘expandAll(dummy1.SI)’ –which is a wrapper that applies C2E to each one of
the structures of the SI, we see that results for elements ‘a’ and ‘b’, i.e, the formulae ‘<<a,d>,c>’ and
‘<<b,c>,d>’ are recursive because they contain the elements being defined –‘a’ and ‘b’ respectively. Thus
these two formulae were output at step (5.3) and are of type (i), while when making substitutions for the

11

12 Appendix: Computational examples.

structure ‘i’ C2E falls into an infinite loop and outputs ‘UNDECIDED’ when the maximum number of loops
is reached (type (ii) output at (5.2)). In contrast, output for elements ‘f’ and ‘g’ –formulae ‘<e,h>’ and
‘<<e,h>,<e,h>>’, are output of type (iii) that happens at step (6) when the formula does not change in
two successive loops.

S1-5.3. Avoiding infinite loops in the search for expanded formulae. In the previous section we
saw that, for an initial condensed formula, the C2E algorithm performs as many substitutions as possible,
but falls into an infinite loop when a recursive element is present within a formula that is being expanded.
To avoid the possibility of ‘UNDECIDED’ formula, it is necessary to detect recursive elements ‘on the fly’
and avoid it subsequent substitution in the expanding formulae. To do this it is necessary to examine
the complete SI as a whole, and not one element at the time, as C2E does.

To solve this problem one of us (M.H R-V) designed the “turtle”2 algorithm, which performs a double
cycle of operand substitutions, but as soon as an operand is found within the formula for the corresponding
element, such element is “frozen” and it is not substituted in any of the following cycles, avoiding the
entrance into infinite loops. A list of all operands is output, including a list of the cases where an operand
(in column ‘Name’ of the SI) was frozen –signaling the fact that its corresponding formula is recursive.
In a parallel way, the algorithm keeps track of the formula being expanded and, at the end, it output
those expanded formulae. In BOX 6 we present the results of the “turtle” algorithm, as implemented in
the function ‘findEssential’; see also ‘Mathematical addendum’ for a more detailed explanation.
An example is presented in BOX 5 with the SI ‘dummy1.SI’.

BOX 6

Comparing the results of the C2E algorithm

(implemente in expandAll) with the results

of the turtle algorithm (implemente in findEssential).

As before:

> data(dummy1.SI)

> expandAll(dummy1.SI)

name condensed expanded

1 a <b,c> <<a,d>,c>

2 b <a,d> <<b,c>,d>

3 f <e,h> <e,h>

4 g <f,f> <<e,h>,<e,h>>

5 i <a,b> UNDECIDED

Compare with

> findEssential(dummy1.SI)

name Recursive Essential o1 o2 Operands Expanded

1 a TRUE TRUE b c a;d;c <<a,d>,c>

2 b TRUE TRUE a d b;c;d <<b,c>,d>

3 f FALSE FALSE e h e;h <e,h>

4 g FALSE FALSE f f e;h <<e,h>,<e,h>>

5 i FALSE FALSE a b b;c;a;d <<<a,d>,c>,<a,d>>

###################################### END BOX 6 #####################################

In BOX 6 we can see that ‘findEssential(dummy1.SI)’ gives an explicit expanded formula, equal to
‘<<<a,d>,c>,<a,d>>’, for the structure ‘i’ (row 5 on the last table at BOX 6). In contrast with C2E
(implemented within ‘expandAll’), the turtle algorithm was able to give this explicit formula for the
synthesis of the ‘i’ component because the component ‘a’ was “frozen” as soon as it was recognized that

2M. Humberto Reyes-Valdés gave this name to this algorithm by the fact the first implementation was slow; however, we
greatly improved the time performance in the current implementation of the ‘findEssential’ function.

12

13 Appendix: Computational examples.

its formula was recursive, and thus avoided infinite loops. Note that components ‘a’ and ‘b’ in column
‘Recursive’ had value ‘TRUE’, pointing to the fact that their corresponding formulae are recursive.

A fundamental difference between the C2E and the turtle algorithms is that C2E gives only expanded
formulae for the elements in the set Si (and only when such formulae are not undetermined by the
algorithm), while turtle gives, apart from final expanded formulae, the complete list of operands which
entered –at any point, in the obtention of the expanded formulae.

S1-6. Distinguishing essential cell elements in SIs

We have seen that the turtle algorithm within ‘findEssential’ marks as recursive elements in which its
expanded formula includes, as operand, the element being defined. This implements the first essentiality
rule, ‘ER1’ (see main text), which can be stated as ‘Elements with recursive expanded formula are
essential ’. Even when it has not been mentioned here, ‘findEssential’ also implement the second
essentiality rule, say, ER2 (see main text), i.e., ‘All operands that appear in the expansion of the formula
for an essential element are also essential elements’. Table S1-7 explain the contents of the output
given by the ‘findEssential()’ function, while BOX 7 demonstrate the implementation of the second
essentiality rule in another example.

Table S1-7. Contents in the output of function ‘findEssential()’.

First component (named ‘main’ or unique component when ‘give.sets = FALSE’)
Column Content
name Character: names of elements defined in the SI (the set of internal elements Si)
Recursive Logical; is the corresponding expanded formula recursive (and thus the corresponding

element is essential by rule 1)?
Essential Logical; is the corresponding element essential? (by essentiality rules 1 or 2)
o1 A character vector with the left hand side operand of the binary operator for element in

column name.
o2 A character vector with the right hand side operand of the binary operator for element in

column name.
Operands Character strings with the operands that appeared during formula expansion
Expanded Character strings with the final expanded formulae for the corresponding elements

Second component (a list with 8 sets)
Component Content
G A character vector with the names in the set G (when the name of the element begins

with ‘g.’).
EG Character vector with the names of essential genomic elements (a proper subset of G).
Si A character vector with the names in the set Si (these are the same elements that appear

in the column ‘name’).
ESi Character vector with the names of the essential elements of Si

Se Character vector with the names in the set Se (elements in columns ‘o1’ or ‘o2’ which are
not in G or Se).

ESe Character vector with the names of the essential elements in the set Se.
E Character vector with the names of the essential elements contained in the SI.
NE Character vector with the names of the non essential elements contained in the SI.

BOX 7

> data(dummy2.SI) # Load dummy2.SI

> dummy2.SI # Have a look of this SI

name o1 o2

13

14 Appendix: Computational examples.

1 a b c

2 a.a a d

3 d a.a e

4 e f g

> findEssential(dummy2.SI, give.sets = T)

$main

name Recursive Essential o1 o2 Operands Expanded

1 a FALSE TRUE b c b;c <b,c>

2 a.a TRUE TRUE a d b;c;a.a;e;f;g <<b,c>,<a.a,<f,g>>>

3 d TRUE TRUE a.a e a;d;f;g;b;c <<<b,c>,d>,<f,g>>

4 e FALSE TRUE f g f;g <f,g>

$sets

$sets$G

character(0)

$sets$EG

character(0)

$sets$Si

[1] "a" "a.a" "d" "e"

$sets$ESi

[1] "a.a" "d" "e" "a"

$sets$Se

[1] "b" "c" "f" "g"

$sets$ESe

[1] "b" "c" "f" "g"

$sets$E

[1] "a.a" "d" "b" "c" "e" "f" "g" "a"

$sets$NE

character(0)

###################################### END BOX 7 #####################################

Let’s carefully analyze the results of ‘findEssential(dummy2.SI, give.sets = T)’ presented in BOX
7. In particular it is important to underline that the column ‘Operands’ in the ‘findEssential’ output
gives a list of all operands that were found during the process of formula expansion, and not only the
ones that are present in the final expanded formula in column ‘Expanded’. As example take the row 3 of
the ‘main’ result:

name Recursive Essential o1 o2 Operands Expanded

3 d TRUE TRUE a.a e a;d;f;g;b;c <<<b,c>,d>,<f,g>>

In this case, for element ‘d’, the expanded formula, ‘<<<b,c>,d>,<f,g>>’, contain operands b, c, d,

f and g but not the element a, which is part of the list presented in the result of column ‘Operands’:
‘a;d;f;g;b;c’. This is because, at some point in the expansion of the formula for d, the operand a

appeared, but was posteriorly substituted (by the formula <b,c>) and thus it does not form part of the
final expanded formula. However, ER2 is about ‘operands’ that appear (at some point) in the expansion of

14

15 Appendix: Computational examples.

a formula. Given that the expanded formula for d is recursive, this element was classified as ‘essential’ (by
ER1), but because a appears as operand in the expansion of the formula for d, a is classified as essential
by the ER2. However, if d is essential it follows that a is also essential, because to synthesize d at some
point we need the existence of a, as stated by ER2. As a final result of ‘findEssential(dummy2.SI,
give.sets = T)’ we have that all 8 elements named in the SI are essential. a.a and d are essential
because their corresponding expanded formulae are recursive (ER1), while the remaining 6 elements (a,
b, c, e, f and g) are essential because they appear as operands for a.a or d (ER2).

We can use R functions to define the different sets present in the ‘dummy2.SI’ SI to corroborate the
results obtained by ‘findEssential(dummy2.SI, give.sets = T)’; this will be useful in cases with
more complex SIs. BOX 8 present such calculations.

BOX 8

> data(dummy2.SI)

Let’s obtain the set S of all elements named in dummy2.SI

> S <- sort(union(dummy2.SI$name, union(dummy2.SI$o1, dummy2.SI$o2)))

> S

[1] "a" "a.a" "b" "c" "d" "e" "f" "g"

Keep the results in a temp object

> temp <- findEssential(dummy2.SI, give.sets = T)

The set of elements which formulae are recursive

> S.R <- temp$main$name[temp$main$Recursive]

> S.R

[1] "a.a" "d"

The list of operands for "a.a"

> temp$main$Operands[temp$main$name=="a.a"]

[1] "b;c;a.a;e;f;g"

Presented as a set (vector)

> strsplit(temp$main$Operands[temp$main$name=="a.a"], split=";")[[1]]

[1] "b" "c" "a.a" "e" "f" "g"

All operands for both essential components

(These are essential by essentiality rule 2, ER2):

> E.O <- sort(union(strsplit(temp$main$Operands[temp$main$name=="a.a"], split=";")[[1]],

strsplit(temp$main$Operands[temp$main$name=="d"], split=";")[[1]]))

> E.O

[1] "a" "a.a" "b" "c" "d" "e" "f" "g"

And this set is equal to S:

> setdiff(S, E.O)

character(0)

And we could see the correspondence with results in the

collection of sets given by "findEssential":

> names(temp$sets)

[1] "G" "EG" "Si" "ESi" "Se" "ESe" "E" "NE"

> setdiff(temp$sets$E, E.O) # Must be the empty set:

character(0)

Correct.

###################################### END BOX 8 #####################################

From Box 8 we see that elements a.a and d of dummy2.SI are classified as essential by the recursiveness
of their expanded formula (ER1), while all 8 elements present in this SI fulfill the ER2, as can be seen
by the obtention of the set ‘E.O’ in BOX 8.

15

16 Appendix: Computational examples.

Boxes 9 and 10 presents the analysis of ‘dummy3.SI’, which is an SI obtained from ‘dummy2.SI’ by adding
elements and detailing the types of elements present.

BOX 9

Compare dummy2.SI with dummy3.SI

> data(dummy2.SI, dummy3.SI)

> dummy2.SI

name o1 o2

1 a b c

2 a.a a d

3 d a.a e

4 e f g

> dummy3.SI

name o1 o2 set.o1 set.o2 type.n type.o1 type.o2 structure

1 a b c Si Si Apoenzyme Peptide Peptide a.a.System

2 a.a a d Si Si Holoenzyme Apoenzyme Cofactor a.a.System

3 d a.a e Si Si Cofactor Holoenzyme Pre-Cofactor a.a.System

4 e f g Se Se Pre-Cofactor Metabolite Metabolite a.a.System

5 x a.a y Si Se Metabolite Holoenzyme Metabolite a.a.System

6 t.b g.b pol G Se m-RNA Gene RNA-polymerase a.a.System

7 b t.b rib Si Se Peptide m-RNA Ribosome a.a.System

8 t.c g.c pol G Se m-RNA Gene RNA-polymerase a.a.System

9 c t.c rib Si Se Peptide m-RNA Ribosome a.a.System

Comment

1 ’a’ is an inactive enzyme

2 ’a.a’ is the active enzyme

3 ’d’ is a cofactor synthesized from ’e’ by ’a.a’

4 ’e’ is a pre-cofactor synthesized from ’f’ and ’g’

5 ’x’ is a metabolite produced from ’y’ by ’a.a’

6 The m-RNA for ’b’ is obtained from its gene

7 Peptide ’b’ is synthesized

8 The m-RNA for ’c’ is obtained from its gene

9 Peptide ’c’ is synthesized

Normalizes dummy3.SI

> normalize.SI(dummy3.SI)

name o1 o2 set.o1 set.o2 type.n type.o1 type.o2 structure

1 a b c Si Si Apoenzyme Peptide Peptide a.a.System

2 a.a a d Si Si Holoenzyme Apoenzyme Cofactor a.a.System

3 d a.a e Si Si Cofactor Holoenzyme Pre-Cofactor a.a.System

4 e f g Se Se Pre-Cofactor Metabolite Metabolite a.a.System

5 x a.a y Si Se Metabolite Holoenzyme Metabolite a.a.System

6 t.b g.b pol G Se m-RNA Gene RNA-polymerase a.a.System

7 b t.b rib Si Se Peptide m-RNA Ribosome a.a.System

8 t.c g.c pol G Se m-RNA Gene RNA-polymerase a.a.System

9 c t.c rib Si Se Peptide m-RNA Ribosome a.a.System

Warning message:

In normalize.SI(dummy3.SI) :

Argument "SI" has more than 9 columns; extra columns will be deleted in the output!

###################################### END BOX 9 #####################################

From BOX 9 we can notice that columns name, o1 and o2 in rows 1 to 4 are equal in both SIs (dummy2.SI
and dummy3.SI), but dummy3.SI includes all columns needed for a normalized SI (see Table S1-6), plus

16

17 Appendix: Computational examples.

an extra column named ‘Comment’. We can also notice that dummy3.SI include ‘biological details’ absent
from the purely abstract case of dummy2.SI. In fact, we now know that a.a is an holoenzyme3, i.e., an
enzyme that needs a cofactor (d) to be in its active form, and also realize that element a is a heterodimer
enzyme formed by two peptides, b and c. Even more, we can see that a.a is needed to obtain its own
cofactor, d, from a pre-cofactor, e, and that a.a also catalyze a reaction that gives product x from its
interaction with y (row 5 of dummy3.SI). We can also observe that rows 6 to 9 define the synthesis of
peptides b and c from their corresponding genes and with the participation of the RNA polymerase
(pol) to form the mRNAs (t.b and t.c) and the ribosome (rib) to synthesize the peptides from their
corresponding mRNAs. Column ‘Comment’ could be useful for the reader but it is not a formal part of the
SI (see Table S1-6) and thus will be eliminated from it when the SI is processed by any of the functions
of InterPlay.

In BOX 10 we can see the results of the analysis performed by ‘findEssential’ in ‘dummy3.SI’.

BOX 10

Performs the findEssential analysis including sets.

> temp <- findEssential(dummy3.SI, give.sets = TRUE)

Warning message:

In normalize.SI(SI, give.sets = TRUE) :

Argument "SI" has more than 9 columns; extra columns will be deleted in the output!

> names(temp)

[1] "main" "sets"

> temp$main

name Recursive Essential o1 o2 Operands

1 a FALSE TRUE b c t.b;rib;t.c;g.b;pol;g.c

2 a.a TRUE TRUE a d b;c;a.a;e;g.b;pol;rib;g.c;f;g

3 d TRUE TRUE a.a e a;d;f;g;t.b;rib;t.c;g.b;pol;g.c

4 e FALSE TRUE f g f;g

5 x FALSE FALSE a.a y a;d;y;t.b;rib;t.c;g.b;pol;g.c

6 t.b FALSE TRUE g.b pol g.b;pol

7 b FALSE TRUE t.b rib g.b;pol;rib

8 t.c FALSE TRUE g.c pol g.c;pol

9 c FALSE TRUE t.c rib g.c;pol;rib

Expanded

1 <<<g.b,pol>,rib>,<<g.c,pol>,rib>>

2 <<<t.b,rib>,<t.c,rib>>,<a.a,<f,g>>>

3 <<<b,c>,d>,<f,g>>

4 <f,g>

5 <<<b,c>,d>,y>

6 <g.b,pol>

7 <<g.b,pol>,rib>

8 <g.c,pol>

9 <<g.c,pol>,rib>

###################################### END BOX 10 ####################################

From BOX 10 we can see that essentiality of the first components defined within both SIs, say a, a.a, d
and e is consistently confirmed by the analyses in both SIs (findEssential(dummy2.SI, give.sets =

T) in BOX 7 and findEssential(dummy3.SI, give.sets = T) in BOX 10). Now we can see in BOX
11 the sets obtained with findEssential(dummy3.SI, give.sets = T).

BOX 11

3See for example the definition of Cofactor.

17

https://en.wikipedia.org/wiki/Cofactor_(biochemistry)

18 Appendix: Computational examples.

> temp$sets # Obtained from findEssential in BOX 10

$G

[1] "g.b" "g.c"

$EG

[1] "g.b" "g.c"

$Si

[1] "a" "a.a" "b" "c" "d" "e" "t.b" "t.c" "x"

$ESi

[1] "a.a" "d" "b" "c" "e" "a" "t.b" "t.c"

$Se

[1] "f" "g" "pol" "rib" "y"

$ESe

[1] "pol" "rib" "f" "g"

$E

[1] "a.a" "d" "b" "c" "e" "g.b" "pol" "rib" "g.c" "f" "g" "a" "t.b"

[14] "t.c"

$NE

[1] "x" "y"

###################################### END BOX 11 ####################################

From the output in BOX 11 we can first notice that we have two genomic elements, ‘g.b’ and ‘g.c’ in
set ‘G’ 4 and we see that those two genes are essential, forming the set ‘EG’. This is a result of the fact
that both genes enter (as operands) in the expanded formulas to obtain some of the essential structures,
as is corroborated in BOX 12.

BOX 12

Corroborating that genes g.b and g.c are included

within the operands of some essential structures.

> temp.e <- temp$main$name[temp$main$Essential] # List of essential internal structures

> temp.e

[1] "a" "a.a" "d" "e" "t.b" "b" "t.c" "c"

Are "g.b" or "g.c" within the operands of the 8 essential structures?

Make a list with operands for each essential structure

> temp.o <- strsplit(temp$main$Operands[temp$main$Essential], ";")

> temp.o

[[1]]

[1] "t.b" "rib" "t.c" "g.b" "pol" "g.c"

[[2]]

[1] "b" "c" "a.a" "e" "g.b" "pol" "rib" "g.c" "f" "g"

[[3]]

[1] "a" "d" "f" "g" "t.b" "rib" "t.c" "g.b" "pol" "g.c"

[[4]]

4 Important: genomic elements are identified in InterPlay functions only if their names begin exactly with the symbols
‘g.’; thus this convention for names of genomic elements must be followed when constructing SIs.

18

19 Appendix: Computational examples.

[1] "f" "g"

[[5]]

[1] "g.b" "pol"

[[6]]

[1] "g.b" "pol" "rib"

[[7]]

[1] "g.c" "pol"

[[8]]

[1] "g.c" "pol" "rib"

Now for g.b:

for(i in 1:8){

if(is.element("g.b", temp.o[[i]])) print(paste("g.b is element of operands

of the essential structure", temp.e[i]))

}

[1] "g.b is element of operands \n\tof the essential structure a"

[1] "g.b is element of operands \n\tof the essential structure a.a"

[1] "g.b is element of operands \n\tof the essential structure d"

[1] "g.b is element of operands \n\tof the essential structure t.b"

[1] "g.b is element of operands \n\tof the essential structure b"

and for g.c:

for(i in 1:8){

if(is.element("g.c", temp.o[[i]])) print(paste("g.c is element of operands

of the essential structure", temp.e[i]))

}

[1] "g.c is element of operands of the essential structure a"

[1] "g.c is element of operands of the essential structure a.a"

[1] "g.c is element of operands of the essential structure d"

[1] "g.c is element of operands of the essential structure t.c"

[1] "g.c is element of operands of the essential structure c"

###################################### END BOX 12 ####################################

Thus in BOX 12 we corroborated that genes g.b and g.c are essential because they participate (as
operands) in the synthesis of 5 essential structures, and thus fulfill ER2.

Going back to the sets obtained in BOX 11 in the result of findEssential(dummy3.SI, give.sets =

T), we can see that the only non essential structures (in set NE) are x and y. x is an internal element (in
set Si), which synthesis is defined in the row 5 of dummy3.SI which contains the binary operator <a.a,

y>, thus y is an external element in set the set Se.

Note that ‘essentiality’, as given in the output of the function ‘findEssential’ depends on the full
content of the particular SI analyzed. For example, in the context of dummy3.SI the (intrinsically)
essential elements RNA polymerase (pol) and ribosome (rib) are classified as ‘essential’ (into the set E),
only by the fact that they participate as operands in the synthesis of essential structures. But it is easy
to exemplify cases of SIs where intrinsically essential structures (as pol and rib) play exactly the same
roles, i.e., synthesis of mRNAs from genes and synthesis of polypeptides from mRNAs, respectively, but
they are not classified as essential if they do not participate as operands into the synthesis of essential
structures. This is illustrated in BOX 13.

BOX 13

A case where pol and rib are classified as non essential

> data(dummy1.SI)

19

20 Appendix: Computational examples.

> dummy1.SI

name o1 o2

1 a b c

2 b a d

3 f e h

4 g f f

5 i a b

Assume that "e" is a peptide.

Let’s add a gene "e" as well as its corresponding transcript.

> t.dummy.SI <- rbind(dummy1.SI, c("t.e", "g.e", "pol"), c("e", "t.e", "rib"),

stringsAsFactors = FALSE)

> t.dummy.SI

name o1 o2

1 a b c

2 b a d

3 f e h

4 g f f

5 i a b

6 t.e g.e pol

7 e t.e rib

> findEssential(t.dummy.SI, give.sets = TRUE)

$main

name Recursive Essential o1 o2 Operands

1 a TRUE TRUE b c a;d;c

2 b TRUE TRUE a d b;c;d

3 f FALSE FALSE e h t.e;rib;h;g.e;pol

4 g FALSE FALSE f f e;h;g.e;pol;rib

5 i FALSE FALSE a b b;c;a;d

6 t.e FALSE FALSE g.e pol g.e;pol

7 e FALSE FALSE t.e rib g.e;pol;rib

Expanded

1 <<a,d>,c>

2 <<b,c>,d>

3 <<<g.e,pol>,rib>,h>

4 <<<t.e,rib>,h>,<<t.e,rib>,h>>

5 <<<a,d>,c>,<a,d>>

6 <g.e,pol>

7 <<g.e,pol>,rib>

$sets

$sets$G

[1] "g.e"

$sets$EG

character(0)

$sets$Si

[1] "a" "b" "e" "f" "g" "i" "t.e"

$sets$ESi

[1] "a" "b"

20

21 Appendix: Computational examples.

$sets$Se

[1] "c" "d" "h" "pol" "rib"

$sets$ESe

[1] "d" "c"

$sets$E

[1] "a" "b" "d" "c"

$sets$NE

[1] "g.e" "e" "f" "g" "i" "t.e" "h" "pol" "rib"

###################################### END BOX 13 ####################################

As shown in BOX 13, when intrinsically essential structures as pol and rib enter into an SI only as
operands for the expansion of formulas of non essential elements –as in this case e, then the structures
pol and rib will be classified as ‘non essential’, i.e., in the output they belong to the set NE and also to
Se, but do not exist into E. It is important to underline that this is not an error of the method or the
algorithm, but a result of the fact that within the context of a particular SI these structures do not fulfill
any of the two essentiality rules.

S1-6.1. Analysis of a more realistic SI. In the previous sections we exemplified concepts of SI as
well as data and algorithms within the InterPlay package with small fictional SIs (dummy1.SI, dummy2.SI
and dummy2.SI). In this section we analyze a more complex an realistic SI, say int.SI which contains
information for the synthesis of the ribosome (rib) from the genes, peptides and ribosomal RNAs which
integrate this structure, RNA polymerase (pol) from the genes and sub units (peptides) and, finally, for
the synthesis of the metabolite streptomycin (STR).

BOX 14 shows the first steps to summarize the information present in the SI int.SI.

BOX 14

> data(int.SI) # Makes the data available

> class(int.SI) # Which class of structure is it?

[1] "data.frame"

> nrow(int.SI) # With how many rows?

[1] 184

Let’s normalize this SI, including its sets:

> int.SI.n <- normalize.SI(int.SI, give.sets = TRUE)

We know by nrow(int.SI) that there are 184 elements defined within int.SI

But, what are the numbers of other structures (in G and Se)?

> names(int.SI.n$sets) # To remaind us about the names of the sets

[1] "G" "Si" "Se"

> length(int.SI.n$sets$G) # Number of genomic elements.

[1] 62

> length(int.SI.n$sets$Si) # Number of internal elements.

[1] 184

> length(int.SI.n$sets$Se) # Number of external elements.

[1] 3

Let’s define the set of all elements named in int.SI

> S.int <- union(int.SI.n$sets$Si, union(int.SI.n$sets$Se, int.SI.n$sets$G))

> length(S.int)

21

22 Appendix: Computational examples.

[1] 249

Looking at the first 6 rows of int.SI.n$SI

> head(int.SI.n$SI)

name o1 o2 set.o1 set.o2 type.n type.o1 type.o2

1 rib rs50S rs30S Si Si ribosome rib.sub rib.sub

2 rs30S rRNA16S rp30S1-21 Si Si rib.sub rib.RNA protein complex

3 rRNA16S g.rRNA16S pol G Si gene gene enzyme

4 rp30S1 t.rp30S1 rib Si Si peptide transcript ribosome

5 rp30S2 t.rp30S2 rib Si Si peptide transcript ribosome

6 rp30S3 t.rp30S3 rib Si Si peptide transcript ribosome

structure

1 rib

2 rib

3 rib

4 rib

5 rib

6 rib

How many different structures are defined within int.SI.n$SI?

> unique(int.SI.nSIstructure)

[1] "rib" "pol" "STR"

How many rows of int.SI.n$SI define each one of these structures?

> table(int.SI.nSIstructure)

pol rib STR

12 161 11

###################################### END BOX 14 ####################################

From BOX 14 we see that int.SI is an SI with 184 rows which contains information for a total of 249
elements, of which 62 (≈ 25%) are genomic elements (in set G), 184 (≈ 74%) are internal elements defined
within the SI (in set Si) and only 3 (≈ 1%) are external elements not defined within the SI (in set Se).
We also see that inside int.SI we have information for the synthesis of three ‘structures’, say pol (RNA
polymerase) which is determined by 12 rows of int.SI representing ≈ 7% of the total, rib (ribosome)
which is determined by 161 rows of int.SI representing ≈ 88% of the total and STR (streptomycin) which
is determined by 11 rows of int.SI representing ≈ 6% of the total number of rows.

We could analyze the full int.SI into an SIngle step, but it will be illustrative to analyze first parts
of the SI, beginning with the rows that that define the pol (RNA polymerase). BOX 15 presents such
analysis.

BOX 15

Segregate the part of int.SI which has to do with pol

> pol.SI <- int.SI[int.SI$structure == ’pol’,]

> nrow(pol.SI)

[1] 12

> pol.SI.n <- normalize.SI(pol.SI, give.sets = TRUE)

> pol.SI.n$SI[,1:8] # See this interactome (excluding column "structure")

name o1 o2 set.o1 set.o2 type.n type.o1 type.o2

162 bp-b bp b Si Si protein complex peptide peptide

163 2a a a Si Si protein complex peptide peptide

164 ba bp-b 2a Si Si protein complex protein complex protein complex

165 pol o ba Si Si enzyme peptide protein complex

22

23 Appendix: Computational examples.

166 t.bp g.bp pol G Si transcript gene enzyme

167 t.b g.b pol G Si transcript gene enzyme

168 t.a g.a pol G Si transcript gene enzyme

169 t.o g.o pol G Si transcript gene enzyme

170 bp t.bp rib Si Se peptide transcript ribosome

171 b t.b rib Si Se peptide transcript ribosome

172 a t.a rib Si Se peptide transcript ribosome

173 o t.o rib Si Se peptide transcript ribosome

> pol.SI.n$sets # Examine the sets of elements

$G

[1] "g.a" "g.b" "g.bp" "g.o"

$Si

[1] "2a" "a" "b" "ba" "bp" "bp-b" "o" "pol" "t.a" "t.b" "t.bp"

[12] "t.o"

$Se

[1] "rib"

Use findEssential to perform the analysis

> fe.pol.SI <- findEssential(pol.SI.n, give.sets=T)

> fe.pol.SI$main[,1:5] # See the first 5 columns of main result

name Recursive Essential o1 o2

1 bp-b TRUE TRUE bp b

2 2a TRUE TRUE a a

3 ba TRUE TRUE bp-b 2a

4 pol TRUE TRUE o ba

5 t.bp TRUE TRUE g.bp pol

6 t.b TRUE TRUE g.b pol

7 t.a TRUE TRUE g.a pol

8 t.o TRUE TRUE g.o pol

9 bp TRUE TRUE t.bp rib

10 b TRUE TRUE t.b rib

11 a TRUE TRUE t.a rib

12 o TRUE TRUE t.o rib

Let’s see some of the sets associated

> fe.pol.SI$sets$Se # Structures classified as external (Se)

[1] "rib"

> fe.pol.SI$sets$ESe # Essential structures classified as external (ESe)

[1] "rib"

> fe.pol.SI$sets$E # Essential elements

[1] "bp-b" "2a" "ba" "pol" "t.bp" "t.b" "t.a" "t.o" "bp" "b" "a"

[12] "o" "rib" "g.bp" "g.b" "g.o" "g.a"

> fe.pol.SI$sets$NE # Non Essential elements

character(0)

###################################### END BOX 15 ####################################

From BOX 15 we can see that all elements in the ‘pol.SI.n’ are classified as essential; even more all the
elements in the set Si (internal elements in column ‘name’ of the SI) have a recursive expanded formula,
and thus fulfill ER1. We can also see that the only ‘external’ element (in set Se) which is named within

23

24 Appendix: Computational examples.

the SI is the ribosome (‘rib’) which also result to be essential by fulfilling ER2; i.e., it enters as operand
for all the elements defined in in ‘name’, see ‘fe.pol.SI$main$Operands’ (data not shown).

In BOX 16 we analyze the subset of the integrate SI ‘int.SI’ which is involved with the synthesis of
streptomycin (structure ‘STR’).

BOX 16

Obtain the streptomycin SI by selecting rows

with structure == STR

> str.SI <- int.SI[int.SI$structure == ’STR’,]

> nrow(str.SI)

[1] 11

> str.SI

name o1 o2 set.o1 set.o2 type.n type.o1 type.o2 structure

174 t.StrH g.StrH pol G Si transcript gene enzyme STR

175 StrH t.StrH rib Si Si peptide transcript ribosome STR

176 t.DeH g.DeH pol G Si transcript gene enzyme STR

177 DeH t.DeH rib Si Si enzyme transcript ribosome STR

178 t.StrK g.StrK pol G Si transcript gene enzyme STR

179 StrK t.StrK rib Si Si enzyme transcript ribosome STR

180 (a.34) (34) StrH Se Si metabolite metabolite peptide STR

181 (35) (a.34) (28) Si Se metabolite metabolite metabolite STR

182 (41) (35) (40) Si Se metabolite metabolite metabolite STR

183 (42) (41) DeH Si Si metabolite metabolite enzyme STR

184 STR (42) StrK Si Si metabolite metabolite enzyme STR

Perform the analysis

> fe.str.SI <- findEssential(str.SI, give.sets = T)

Show the whole results

> fe.str.SI

$main

name Recursive Essential o1 o2

1 t.StrH FALSE FALSE g.StrH pol

2 StrH FALSE FALSE t.StrH rib

3 t.DeH FALSE FALSE g.DeH pol

4 DeH FALSE FALSE t.DeH rib

5 t.StrK FALSE FALSE g.StrK pol

6 StrK FALSE FALSE t.StrK rib

7 (a.34) FALSE FALSE (34) StrH

8 (35) FALSE FALSE (a.34) (28)

9 (41) FALSE FALSE (35) (40)

10 (42) FALSE FALSE (41) DeH

11 STR FALSE FALSE (42) StrK

Operands

1 g.StrH;pol

2 g.StrH;pol;rib

3 g.DeH;pol

4 g.DeH;pol;rib

5 g.StrK;pol

6 g.StrK;pol;rib

7 (34);t.StrH;rib;g.StrH;pol

8 (34);StrH;(28);g.StrH;pol;rib

24

25 Appendix: Computational examples.

9 (a.34);(28);(40);(34);t.StrH;rib;g.StrH;pol

10 (35);(40);t.DeH;rib;(34);StrH;(28);g.DeH;pol;g.StrH

11 (41);DeH;t.StrK;rib;(a.34);(28);(40);g.DeH;pol;g.StrK;(34);t.StrH;g.StrH

Expanded

1 <g.StrH,pol>

2 <<g.StrH,pol>,rib>

3 <g.DeH,pol>

4 <<g.DeH,pol>,rib>

5 <g.StrK,pol>

6 <<g.StrK,pol>,rib>

7 <(34),<<g.StrH,pol>,rib>>

8 <<(34),<t.StrH,rib>>,(28)>

9 <<<(34),StrH>,(28)>,(40)>

10 <<<(a.34),(28)>,(40)>,<<g.DeH,pol>,rib>>

11 <<<(35),(40)>,<t.DeH,rib>>,<<g.StrK,pol>,rib>>

$sets

$sets$G

[1] "g.DeH" "g.StrH" "g.StrK"

$sets$EG

character(0)

$sets$Si

[1] "(35)" "(41)" "(42)" "(a.34)" "DeH" "STR" "StrH" "StrK"

[9] "t.DeH" "t.StrH" "t.StrK"

$sets$ESi

character(0)

$sets$Se

[1] "(28)" "(34)" "(40)" "pol" "rib"

$sets$ESe

character(0)

$sets$E

character(0)

$sets$NE

[1] "g.DeH" "g.StrH" "g.StrK" "(35)" "(41)" "(42)" "(a.34)" "DeH"

[9] "STR" "StrH" "StrK" "t.DeH" "t.StrH" "t.StrK" "(28)" "(34)"

[17] "(40)" "pol" "rib"

###################################### END BOX 16 ####################################

From the analysis of ‘str.SI’ performed in BOX 16 we can see that none of the elements named in this
SI are classified as essential. First, none of the expanded formula for the synthesis of elements in the
interactome (set Si, column ‘name’) is recursive and as a consequence none of such elements could be
classified as essential by rule ER1. For this reason ER2 is not applied to any of the elements named in
the SI; i.e., no operands are classified as essential. The set of external elements in the SI includes "(28)"
"(34)" "(40)" "pol" and "rib", where the first three are metabolites (intermediates in streptomycin

25

26 Appendix: Computational examples.

synthesis; see Table 5 in main text for full names of these compounds), and we also have within this set
the the intrinsically essential structures "pol" and "rib", which however in the context of the synthesis
of streptomycin are classified as ‘non essential’. This is not a contradiction because, as remarked before,
essentiality is dependent on the context; if none of the elements defined within the SI (‘str.SI’ in this
case) is classified as essential, then neither will be any of the elements in the set of internal elements of
the SI.

We are now going to proceed with the analysis of the subset of the integrate SI ‘int.SI’ which is involved
with the synthesis of the ribosome (structure ‘rib’). BOX 17 presents this analysis.

BOX 17

Obtain the ribosome SI by selecting rows

with structure == ’rib’

> rib.SI <- int.SI[int.SI$structure == ’rib’,]

Performs the analysis

> fe.rib.SI <- findEssential(rib.SI, give.sets = T)

See first row of main result (summarized output!)

> fe.rib.SI$main[1,] # See only the first row of main results

name Recursive Essential o1 o2

1 rib TRUE TRUE rs50S rs30S

Operands

1 rp50S1-31;rRNA23S+5S;rRNA16S;rp30S1-21;rp50S1-29;rp50S30;t.rp50S31;rib;g.rRNA23S;pol;g.rRNA5S;

{ ... lots of operands ...}

t.rp50S1;t.rp50S2

Expanded

1 <<<rp50S1-30,rp50S31>,<<g.rRNA23S,pol>,<g.rRNA5S,pol>>>,<<g.rRNA16S,pol>,<rp30S1-20,rp30S21>>>

Are all structures defined in rib.SI classified as essential?

> nrow(fe.rib.SI$main) # Number of rows = Structures defined in the SI

[1] 161

The number of the ones classified as essential

> length(fe.rib.SI$main$name[fe.rib.SI$main$Essential])

[1] 161

The number of the ones classified as having a recursive formula

> length(fe.rib.SI$main$name[fe.rib.SI$main$Recursive])

[1] 44

The number of the ones not having a recursive formula

> length(fe.rib.SI$main$name[!fe.rib.SI$main$Recursive])

[1] 117

First 6 names of the ones with a recursive formula

> head(fe.rib.SI$main$name[fe.rib.SI$main$Recursive])

[1] "rib" "rs30S" "rp30S3" "rp30S5" "rp30S7" "rp30S9"

First 6 names of the ones without a recursive formula

> head(fe.rib.SI$main$name[!fe.rib.SI$main$Recursive])

[1] "rRNA16S" "rp30S1" "rp30S2" "rp30S4" "rp30S6" "rp30S8"

> names(fe.rib.SI$sets) # Reminding the names of the sets obtained

[1] "G" "EG" "Si" "ESi" "Se" "ESe" "E" "NE"

Compare the lengths of essential and non essential sets

> length(fe.rib.SI$sets$G)

26

27 Appendix: Computational examples.

[1] 55

> length(fe.rib.SI$sets$EG)

[1] 55

> length(fe.rib.SI$sets$Si)

[1] 161

> length(fe.rib.SI$sets$ESi)

[1] 161

> length(fe.rib.SI$sets$Se)

[1] 1

> length(fe.rib.SI$sets$ESe)

[1] 1

> fe.rib.SI$sets$ESe

[1] "pol"

> length(fe.rib.SI$sets$E) # Number of essential

[1] 217

> length(fe.rib.SI$sets$NE) # Number of non essential

[1] 0

###################################### END BOX 17 ####################################

In BOX 17 we can see that all 161 structures which synthesis is defined within the SI ‘rib.SI’ are
essential; however only 44 of them (≈ 27%) have a recursive expanded formula, fulfilling ER1, while the
remaining 117 (≈ 73%) do not have a recursive formulae but fulfill ER2, i.e., those elements appear as
operands in one more of the cases of essential elements.

It is important to note that ‘findEssential’ relies in the existence of the value of ‘name’ within the
corresponding ‘Operands’ to declare the element in ‘name’ as an essential component by the application
of the ER1. By the way in which the ‘Expanded’ formula is obtained within ‘findEssential’ –which
is guided by the turtle algorithm, there could be cases in which the formula shown in ‘Expanded’ will
not contain among its operands the term ‘name’. This will happen in highly complex SIs (as ‘rib.SI’)
because the element in ‘name’ is not yet found in the growing expanded formula when such ‘name’ is
frozen. Expanded formula output by ‘findEssential’ are not unique, in the sense that the expansion
process can be stop at different points, and the formula will be labeled as ‘expanded’ even when further
substitutions could be possible (for example with the C2E algorithm, which in fact exhaust all possible
substitutions). We have seen before that expanded formula obtained by ‘findEssential’ and ‘C2E’ could
differ, and this fact is also illustrated in BOX 18.

BOX 18

Comparing expanded formulae obtained by findEssential

and C2E for ’rib’ (following objects obtained in BOX 17)

The expanded formula found for rib by findEssential

> fe.rib.exp <- fe.rib.SI$main$Expanded[fe.rib.SI$main$name == ’rib’]

The expanded formula found for rib by C2E

> c2e.rib.exp <- C2E("rib", rib.SI)

See both formulae

[1] "<<<rp50S1-30,rp50S31>,<<g.rRNA23S,pol>,<g.rRNA5S,pol>>>,<<g.rRNA16S,pol>,

<rp30S1-20,rp30S21>>>"

[1] "<<<<rp50S1-29,rp50S30>,<t.rp50S31,rib>>,<<g.rRNA23S,pol>,<g.rRNA5S,pol>>>,

<<g.rRNA16S,pol>,<<rp30S1-19,rp30S20>,<t.rp30S21,rib>>>>"

Obtains the the set of operands that exist in each formulae

First for the one obtained with findEssential

> op.fe.rib.exp <- gsub("<", "", fe.rib.exp) # Delete all "<"s!

27

28 Appendix: Computational examples.

> op.fe.rib.exp <- gsub(">", "", op.fe.rib.exp) # Delete all ">"s!

Finally get the operands as a vector

> op.fe.rib.exp <- sort(unique(strsplit(op.fe.rib.exp, split=",", fixed=TRUE)[[1]]))

Second for the one obtained with C2E (c2e.rib.exp)

> op.c2e.rib.exp <- gsub("<", "", c2e.rib.exp) # Delete all "<"s!

> op.c2e.rib.exp <- gsub(">", "", op.c2e.rib.exp) # Delete all ">"s!

> op.c2e.rib.exp <- sort(unique(strsplit(op.c2e.rib.exp, split=",", fixed=TRUE)[[1]]))

Compare...

> op.fe.rib.exp; op.c2e.rib.exp

[1] "g.rRNA16S" "g.rRNA23S" "g.rRNA5S" "pol" "rp30S1-20" "rp30S21"

[7] "rp50S1-30" "rp50S31"

[1] "g.rRNA16S" "g.rRNA23S" "g.rRNA5S" "pol" "rib" "rp30S1-19"

[7] "rp30S20" "rp50S1-29" "rp50S30" "t.rp30S21" "t.rp50S31"

See the differences

> union(op.fe.rib.exp, op.c2e.rib.exp)

[1] "g.rRNA16S" "g.rRNA23S" "g.rRNA5S" "pol" "rp30S1-20" "rp30S21"

[7] "rp50S1-30" "rp50S31" "rib" "rp30S1-19" "rp30S20" "rp50S1-29"

[13] "rp50S30" "t.rp30S21" "t.rp50S31"

(we have 15 operands in the union of both sets)

> intersect(op.fe.rib.exp, op.c2e.rib.exp)

[1] "g.rRNA16S" "g.rRNA23S" "g.rRNA5S" "pol"

(but only 4 in the intersection!)

Which operands are in the C2E but not in the findEssential formula?

> setdiff(op.c2e.rib.exp, op.fe.rib.exp)

[1] "rib" "rp30S1-19" "rp30S20" "rp50S1-29" "rp50S30" "t.rp30S21"

[7] "t.rp50S31"

And the oposite

> setdiff(op.fe.rib.exp, op.c2e.rib.exp)

[1] "rp30S1-20" "rp30S21" "rp50S1-30" "rp50S31"

Let’s isolate the operands found by findEssential for rib

> op.fe.rib <- sort(strsplit(fe.rib.SI$main$Operands[fe.rib.SI$main$name == ’rib’],

split=";")[[1]])

> length(op.fe.rib) # How many operands for "rib"?

[1] 217

> is.element("rib", op.fe.rib) # Is "rib" recursive by essentiality rule 1 (ER1)?

[1] TRUE

Are all operands in the expanded formulae contained in the set

of Operands found with "findEssential"?

> setdiff(op.fe.rib.exp, op.fe.rib) # Must be empty set

character(0)

> setdiff(op.c2e.rib.exp, op.fe.rib) # Must also be empty set

character(0)

###################################### END BOX 18 ####################################

In BOX 18 we can see that the expanded formulae for ‘rib’ obtained with ‘findEssential’ and ‘C2E’ dif-
fer; in fact, the one obtained with C2E is longer (has more operands), and, importantly, it contains within

28

29 Appendix: Computational examples.

its operands the term ‘rib’ and thus it is explicitly recursive, while the one obtained by ‘findEssential’
does not. However, it is possible (but tedious!) to corroborate that the two formulae are expansions of
the original binary operator present in the SI for ‘rib’ (<rs50S, rs30S>), which were stop at different
points. However, the long (217 elements) list of operands (in column ‘Operands’ for row in which name

== ’rib’) does contain the term ‘rib’ and thus this structure was correctly classified as essential using
ER1.

To finish this section BOX 19 presents the results of analyzing the complete SI ‘int.SI’

BOX 19

Load the data

> data(int.SI)

Which structures are defined within int.SI?

> unique(int.SI$structure)

[1] "rib" "pol" "STR"

Number of elements defined in int.SI

> nrow(int.SI)

[1] 184

Perform the analysis (measuring the time that it takes)

> system.time(fe.int.SI <- findEssential(int.SI, give.sets=T))

user system elapsed

8.776 0.078 8.789

Obtains the lengths of each one of the sets

temp <- fe.int.SI$sets

for(i in 1:length(temp)){

print(paste("Set ", names(temp)[i], "has", length(temp[[i]]), "elements."))

}

[1] "Set G has 62 elements."

[1] "Set EG has 59 elements."

[1] "Set Si has 184 elements."

[1] "Set ESi has 173 elements."

[1] "Set Se has 3 elements."

[1] "Set ESe has 0 elements."

[1] "Set E has 232 elements."

[1] "Set NE has 17 elements."

Which are the genomic elements which are not essential?

> setdiff(fe.int.SI$sets$G, fe.int.SI$sets$EG)

[1] "g.DeH" "g.StrH" "g.StrK"

Which are the "external" structures?

> fe.int.SI$sets$Se

[1] "(28)" "(34)" "(40)"

Which are the non essential structures?

> fe.int.SI$sets$NE

[1] "g.DeH" "g.StrH" "g.StrK" "(35)" "(41)" "(42)" "(a.34)" "DeH"

[9] "STR" "StrH" "StrK" "t.DeH" "t.StrH" "t.StrK" "(28)" "(34)"

[17] "(40)"

###################################### END BOX 19 ####################################

29

30 Appendix: Computational examples.

From BOX 19 we see that the SI ‘int.SI’ includes rows defining three structures, "rib", "pol" and
"STR". We have independently seen the analyses of the rows comprising each one of these these structures
previously, but here we analyze the whole SI. After using ‘findEssential’ to obtain the results, we printed
the number of elements that constitute each one of the groups of elements defined in the SI. We find that
the set of all structures named within the SI, S, and composed by disjoint sets G,Si,Se; S = G∪Si ∪Se

contain 62 (≈ 25%), 184 (≈ 74%) and 3 (≈ 1%) elements, respectively; the total of elements in S is
62 + 184 + 3 = 249. And it turns out that 56/62,≈ 90% of the genomic structures in G are essential,
173/184 ≈ 94% of the internal structures in Si are essential, while all 3 external structures in Se are non
essential. The three non essential external structures named in int.SI are "(28)", "(34)" and "(40)",
which are metabolites involved in the synthesis of streptomycin (STR); the names of such compounds are
presented in Table 5 of the main text.

One of the important points of comparing the analysis of the integrated interactome ‘int.SI’, contrasting
it with the partial analyses of ‘pol.SI’, ‘str.SI’ and ‘rib.SI’ is to see how the integration of information
within the whole SI clasifies the roles and essentiality of the structures "rib" and "pol" –which, as
mentioned before are ‘intrinsically essential’. In the whole analysis of int.SI both structures are ‘internal’
–because there is synthesis information for both of them, and ‘essential’ –because the sets of operands
of their corresponding formulae include the corresponding structures, fulfilling the ER1. In contrast,
in the analysis of pol.SI, "rib" is classified as an external and essential structure; in the analysis of
rib.SI, "pol" is classified as an external and essential structure, while in the analysis of str.SI, both
"pol" and "rib" are classified as external and non essential structures –because non of the structures
named in str.SI is essential. Thus we see that the completeness of information about one structure
in part determines the ability of the algorithms to classify them into the ‘essential’ or ‘non essential’
categories; if enough information is present within the SI for the synthesis of an structure or component,
then the algorithms can categorically and correctly classify them into one of the classes, however, when
no synthesis information about the structure is present such classification can vary, depending on the fact
that the element in question appears within the operands of an essential element (as "rib" in pol.SI or
"pol" in rib.SI) or not (as "rib" and "pol" in str.SI).

From the analysis of both, ‘int.SI’ and ‘str.SI’ we confirm that the secondary metabolite streptomycin
(STR) is non essential, and neither are any of the primary elements which enter into its synthesis –except
for the intrinsically essential structures "rib" and "pol" for which there is synthesis information in
‘int.SI’. In fact, all elements in the set ‘NE’ from the analysis of int.SI (see those elements shown in the
result of ‘fe.int.SI$sets$NE’ in BOX 19) are exclusively involved in the synthesis of streptomycin.

An interesting complementary result of the analysis of SIs is the fact that the number of distinct operands
that enter into the synthesis of a given structure gives a relative measure of the complexity of the corre-
sponding structure. Thus, by comparing the number of operands used in the synthesis of a given element
(or structure) with the total number of posible operands (the number of elements in the set S) we can have
an idea of the complexity of such element or structure. BOX 20 presents calculations of elements com-
plexity using the function ‘mea.compl’ which is included in the supplementary file ’S2 SupplFunct.txt’
which must be previously loaded for the code in BOX 20 to work.

BOX 20

NOTE:

Please be sure to have loaded the

supplementary functions with

> source("S2Text.txt")

Also the element fe.int.SI obtained with

fe.int.SI <- findEssential(int.SI, give.sets=T)

(see BOX 19)

must be present in your environment.

30

31 Appendix: Computational examples.

Let’s find the relative complexity i.e.,

Number of operands used in the synthesis / Number of all possible operands

for "pol", "STR" and "rib":

> mea.compl("pol", fe.int.SI)

[1] "Element ’pol’ has a relative complexity of 32/249 (12.85%)"

> mea.compl("STR", fe.int.SI)

[1] "Element ’STR’ has a relative complexity of 166/249 (66.67%)"

> mea.compl("rib", fe.int.SI)

[1] "Element ’rib’ has a relative complexity of 232/249 (93.17%)"

Now, estimate the complexity of each one of the 184

elements synthesized within int.SI, keeping also the

structure to which they belong

> comp.int.SI <- data.frame(int.SI$name, int.SI$structure, rep(0, 184), stringsAsFactors=F)

> names(comp.int.SI) <- c("name", "structure", "rel.com")

> head(comp.int.SI)

name structure rel.com

1 rib rib 0

2 rs30S rib 0

3 rRNA16S rib 0

4 rp30S1 rib 0

5 rp30S2 rib 0

6 rp30S3 rib 0

Fill the rel.com variable with complexity results

for(i in 1:184){

comp.int.SI$rel.com[i] <- mea.compl(comp.int.SI$name[i], fe.int.SI)

}

Output not shown!

See the first rows of the result

> head(comp.int.SI)

name structure rel.com

1 rib rib 93.17

2 rs30S rib 44.58

3 rRNA16S rib 12.05

4 rp30S1 rib 62.25

5 rp30S2 rib 62.25

6 rp30S3 rib 62.25

Order the results by decreasing relative complexity

> comp.int.SI <- comp.int.SI[order(comp.int.SI$rel.com, decreasing=T),]

See the first and last rows of this (reordered) dataset

> head(comp.int.SI)

name structure rel.com

1 rib rib 93.17

161 rp50S1-31 rib 80.72

159 rp50S1-29 rib 79.12

157 rp50S1-27 rib 77.91

31

32 Appendix: Computational examples.

155 rp50S1-25 rib 76.71

153 rp50S1-23 rib 75.50

> tail(comp.int.SI)

name structure rel.com

164 ba pol 12.05

166 t.bp pol 12.05

167 t.b pol 12.05

168 t.a pol 12.05

169 t.o pol 12.05

67 rRNA23S+5S rib 10.04

Summarize the relative complexity

> summary(comp.int.SI)

name structure rel.com

Length:184 Length:184 Min. :10.04

Class :character Class :character 1st Qu.:12.45

Mode :character Mode :character Median :54.22

Mean :42.44

3rd Qu.:62.25

Max. :93.17

> sd(comp.int.SI$rel.com)

[1] 24.84488

Number of elements which enter into the

synthesis of each structure:

> table(comp.int.SI$structure)

pol rib STR

12 161 11

And in percentage

> round(100*table(comp.int.SI$structure)/184)

pol rib STR

7 88 6

Summarize the relative complexity per structure

> summary(comp.int.SI$rel.com[comp.int.SI$structure == "pol"])

Min. 1st Qu. Median Mean 3rd Qu. Max.

12.05 12.05 12.25 28.88 62.25 62.25

> summary(comp.int.SI$rel.com[comp.int.SI$structure == "STR"])

Min. 1st Qu. Median Mean 3rd Qu. Max.

12.45 13.26 62.65 40.96 63.26 66.67

> summary(comp.int.SI$rel.com[comp.int.SI$structure == "rib"])

Min. 1st Qu. Median Mean 3rd Qu. Max.

10.04 12.45 54.22 43.55 62.25 93.17

Boxplot of rel.com per structure (output not shown):

> boxplot(rel.com ~ structure, data=comp.int.SI)

###################################### END BOX 20 ####################################

From BOX 20 we can see that the relatively less ‘complex’ structure defined within the ‘int.SI’ is the
RNA polymerase, ‘pol’ in which synthesis participate 32 of the 249 operands present in that SI, i.e., it uses

32

33 Appendix: Computational examples.

≈ 12.85% of the operands. ‘pol’ is followed in relative complexity by ‘STR’ with 166/249 (≈ 66.67%) and
then by ‘rib’ with the highest value of relative complexity, 232/249 (≈ 93.17%). Evidently, this measure
of ‘relative complexity’ can be criticized as misleading, because from the structural and other points of
view it is clear, for example, that the RNA polymerase is much more ‘complex’ than the metabolite
streptomycin. However, within the very simplified framework of the SI presented here, and taking into
account only the number of operands employed –with tacitly assume that each binary operation as well
as every operand has equal complexity or information, the number of operands employed in the synthesis
of a given element has some explicative value.

By obtaining the relative complexity of all elements defined in the ‘int.SI’ (BOX 20), we find that it
ranges between 10 and 93 percent, with a median of 54 an a mean of 42. By measuring the relative
complexity of the elements which enter in the synthesis of each structure, we also confirm what was
previously observed; the 7 elements that enter into the synthesis of pol are in average (28.88) less
‘complex’ than the 6 that enter into the synthesis of STR (40.96), and the average complexity of the 88
elements that enter in the synthesis ofrib is the highest (43.55).

S1-7. Visualizing SI relations with graph theory

Mathematically a graph is an ordered pair G = (V,E), where V is a set of vertices or nodes and E is a set
of edges or lines, which are 2-element subsets of V (Bang-Jensen and Gutin, 2008). In the interactome,
cell elements are nodes (elements of the set V), while binding or synthesis define two different types of
edges (the E set).

We have seen that algebraic manipulations can determine the essentiality of cell elements defined within
an SI. However, visualization of the plots derived from SIs is of great help for a better understanding
of the relations existent in SIs, as well as to corroborate the essentiality of SI elements. At least two
relations can be visualized as a network from an SI: the ‘binding’ and the ‘synthesis’ relations between
elements. In both cases the elements of the SI are ‘nodes’ while the relations are visualized as ‘edges’
between nodes. ‘edges’ will be non-directed lines in the case of the ‘binding’ relation while them will be
directed lines or ‘arrows’ in the second.

S1-7.1. ‘binding’ and ‘synthesis’ networks from the RNA polymerase SI. BOX 21 presents a
first example with the networks generated by the RNA polymerase SI.

BOX 21

You musta have installed the "igraph" and "InterPlay" packages

> library(InterPlay); library(igraph) # load the packages

You must have the file "S2Text.txt" in your working directory

> source("S2Text.txt")

Load the "int.SI" data and obtain "pol.SI"

> pol.SI <- int.SI[int.SI$structure == "pol",]

Obtaining the "binding" graph for pol.SI

See the SI2d function:

> SI2d # (only partial output is shown here!)

Note the remarks which give some help:

Produces a graph (in igraph format) from an SI (in InterPlay format)

Parameters:

SI - An syntesis interactome (SI)

33

34 Appendix: Computational examples.

which.one - Which type of graph, "synthesis" or "binding".

give.sets - Logical, Want the sets ("Si", "G", "Se") in output? FALSE or TRUE.

Output:

A list with 2:

d - A data frame for edges with names "from" and "to".

nod.at - A data frame with vertices names and attributes

If give.sets=FALSE a third component of the output

will contain the sets "Si", "G", "Se".

Use the function ’SI2d’:

> d.binding.pol <- SI2d(SI=pol.SI, which.one="binding", give.sets=T)

Lets see the components of this object

> names(d.binding.pol) # d.binding.pol is a list!

[1] "d" "nod.at" "sets"

> head(d.binding.pol$d) # This is the binding graph

from to

1 bp b

2 a a

3 bp-b 2a

4 o ba

5 g.bp pol

6 g.b pol

> head(d.binding.pol$nod.at) # This gives "properties" of the nodes

name set type structure

1 2a Si protein complex pol

2 a Si peptide pol

3 b Si peptide pol

4 ba Si protein complex pol

5 bp Si peptide pol

6 bp-b Si protein complex pol

Obtain a graph with the igraph function:

> ? graph_from_data_frame # Ask for help...

Make a graph (in "igraph" format)

g.pol.bind <- graph_from_data_frame(d.binding.pol$d, directed=F)

> g.pol.bind <- graph_from_data_frame(d.binding.pol$d, directed=F)

> g.pol.bind ## Summarizes this graph

IGRAPH a5feae0 UN-- 17 12 --

+ attr: name (v/c)

+ edges from a5feae0 (vertex names):

[1] bp --b a --a bp-b--2a o --ba g.bp--pol g.b --pol g.a --pol

[8] g.o --pol t.bp--rib t.b --rib t.a --rib t.o --rib

Plot this graph

Ignore the remarked functions "tiff" and "dev.off" used to output the plot as a file.

tiff("plots/polBind.tiff") # NOTE: Shown as "Figure 1".

plot(g.pol.bind, main="Network of binding in \’pol\’ SI.", sub="(default parameters)")

dev.off()

34

35 Appendix: Computational examples.

###################################### END BOX 21 ####################################

Figure 1. Binding between elements in the SI for the RNA polymerase (in ‘pol.SI’).

In BOX 21 we see how to use the function ‘SI2d’ to extract from an SI either, the binding (shown in
the example) or the synthesis relations (to be seen in BOX 22) which exist into an SI. ‘SI2d’ gives a
list, which first component is a data.frame named ‘d’, with columns ‘from’ and ‘to’, indicating that an
‘edge’ (undirected line) must join the corresponding elements in the row. The second component of the
list is another data.frame named ‘nod.at’ (node attributes), which use will be seen later. The ‘d’ part
of the list given by ‘SI2d’ can be used by the igraph function ‘graph from data frame’ to obtain a graph
which can be then plotted (see the help of that function which will be repeatedly used in the following
examples). For example, the first line printed when the command ‘> g.pol.bind’‘ is given, say IGRAPH

a5feae0 UN-- 17 12 -- ’, means that we have an UNdirected (the ‘U’ part) graph with ‘17’ nodes and
‘12’ edges or lines.

By plotting the graph with the command ‘plot(g.pol.bind)’ we obtain the result shown in Figure 1.
Your results could be different in the positions of the nodes –because there is a random component on
that, but the 17 elements of the SI and the 12 binding connections between them will be correctly shown
as in Figure 1. By obtaining and ploting the binding network of ‘pol.SI’ we are showing explicitly (in
Figure 1) the binding operators that exist in such SI. For example, the ‘a’ structure has a line connecting
‘a’ with itself –because two ‘a’ elements exist in the binary operator that determine the structure ‘2a’;
see ‘pol.SI[2,]’ in your R command window.

We are not going to give more examples of ‘binding’ graphs that arise from SIs, but will concentrate in
the more interesting ‘synthesis’ graphs latent in SIs. BOX 22 presents the synthesis network determined
by ‘pol.SI’.

BOX 22

Obtains the object containing data frames for the synthesis interactome in pol.SI.

> d.pol <- SI2d(pol.SI)

35

36 Appendix: Computational examples.

Note that we used the defaults of the SI2d function, which are:

which.one="synthesis" and give.sets=FALSE

Let’s see this object

> d.pol

$d

from to

1 bp bp-b

2 a 2a

3 bp-b ba

4 o pol

5 g.bp t.bp

6 g.b t.b

7 g.a t.a

8 g.o t.o

9 t.bp bp

10 t.b b

11 t.a a

12 t.o o

13 b bp-b

14 2a ba

15 ba pol

16 pol t.bp

17 pol t.b

18 pol t.a

19 pol t.o

20 rib bp

21 rib b

22 rib a

23 rib o

$nod.at

name set type structure

1 2a Si protein complex pol

2 a Si peptide pol

3 b Si peptide pol

4 ba Si protein complex pol

5 bp Si peptide pol

6 bp-b Si protein complex pol

7 g.a G gene pol

8 g.b G gene pol

9 g.bp G gene pol

10 g.o G gene pol

11 o Si peptide pol

12 pol Si enzyme pol

13 rib Se ribosome pol

14 t.a Si transcript pol

15 t.b Si transcript pol

16 t.bp Si transcript pol

17 t.o Si transcript pol

###################################### END BOX 22 ####################################

36

37 Appendix: Computational examples.

In the cases of graphs obtained for the synthesis of elements, as the case of ‘d.pol’, the first component, a
data frame with with column names ‘from’ and ‘to’, determines a directed graph, meaning that instead of
simple lines as vertices, we have directed vertices shown as ‘arrows’. In the context of an SI, the function
‘SI2d’ with the (default) option ‘which.one="synthesis"’ will give in the ‘d’ component indication of
the synthesis path of elements; in that context columns ‘from’ and ‘to’ mean that the element in column
‘from’ is obtained by adding something to the element in column ‘to’. In BOX 23 we will see the
plotting of the synthesis graph obtained in ‘d.pol’ and in BOX 24 we will see how to decorate this plot
with particular attributes of the nodes, present in ‘d.pol$nod.at’, which contains columns ‘name’, ‘set’,
‘type’ and ‘structure’.

BOX 23

First let’s obtain a graph of the synthesis interactome in d.pol

> g.pol <- graph_from_data_frame(d.pol$d, directed = TRUE)

> g.pol

IGRAPH 67663b8 DN-- 17 23 --

+ attr: name (v/c)

+ edges from 67663b8 (vertex names):

[1] bp ->bp-b a ->2a bp-b->ba o ->pol g.bp->t.bp g.b ->t.b g.a ->t.a

[8] g.o ->t.o t.bp->bp t.b ->b t.a ->a t.o ->o b ->bp-b 2a ->ba

[15] ba ->pol pol ->t.bp pol ->t.b pol ->t.a pol ->t.o rib ->bp rib ->b

[22] rib ->a rib ->o

> ? E

> E(g.pol) # Gives the edges sequence in the graph.

+ 23/23 edges from 67663b8 (vertex names):

[1] bp ->bp-b a ->2a bp-b->ba o ->pol g.bp->t.bp g.b ->t.b g.a ->t.a

[8] g.o ->t.o t.bp->bp t.b ->b t.a ->a t.o ->o b ->bp-b 2a ->ba

[15] ba ->pol pol ->t.bp pol ->t.b pol ->t.a pol ->t.o rib ->bp rib ->b

[22] rib ->a rib ->o

> ? V

> V(g.pol) # Gives the vertices in the graph.

+ 17/17 vertices, named, from 67663b8:

[1] bp a bp-b o g.bp g.b g.a g.o t.bp t.b t.a t.o b 2a ba

[16] pol rib

Ignore the remarked functions "tiff" and "dev.off" used to output the plot as a file.

tiff("plots/polSynth.tiff") # NOTE: Shown as "Figure 2".

plot(g.pol, main="Synthesis network in \’pol\’ SI.", sub="(default parameters)")

dev.off()

###################################### END BOX 23 ####################################

In BOX 23 (as well as from BOX 22) we see that the network interactome of the ‘pol.SI’ contains
23 relations (edges) between 17 elements (vertices), that are each one of the elements of the S set of
structures named within the SI ‘pol.SI’, and Figure 2 shows the plot of the synthesis network from
‘pol.SI’, plotted with the default parameters.

Before proceeding, we can see Figure 3 (presented as Fig. 2 in the main text) to remember that external
elements (in set Se; box (A) in Figure 3) can only have ‘departing’ or ‘out’ arrows, as do genomic elements
(in set G; box (B) in Figure 3), while elements which synthesis is described into the SI, i.e., internal
elements in set Si (box (C) in Figure 3) have exactly 2 ‘incoming’ or ‘in’ arrows, because synthesis in an
SI is defined by binary operators, and these elements could have any number of departing arrows.

37

https://en.wikipedia.org/wiki/Directed_graph

38 Appendix: Computational examples.

Figure 2. Synthesis network in the SI for the RNA polymerase (in ‘pol.SI’).

Figure 3. Possible cases of edges (arrows) for elements of different sets, Se,G and Si in
A) B) and C) respectively, in a synthesis interactome network.

Figure 2 can be improved, by denoting with different colors, for example, to which set each one of the nodes
belong. In BOX 24 we show how to decorate this plot with particular attributes of the nodes, present in
the component ‘d.pol$nod.at’, which contains columns ‘name’, ‘set’, ‘type’ and ‘structure’.

BOX 24

We will use the function "map2rain" to select colors for plotting vertices attributes

> map2rain # See the function (not all output shown)

map2rain

Utility function to color graphs from an interactome.

Parameters:

net - A graph (or "network") as produced by "graph_from_data_frame"

what - Option for which type of attribute will be color,

38

39 Appendix: Computational examples.

possible values are: "type", "set" or "structure"

alpha - The alpha parameter for the "rainbow" function (>=0, <=1)

Output:

A list with two components:

1) - col.key (a data frame with "types" and "my.col")

2) - A vector with the color definition for each vertice.

Produces a graph of d.pol which include the attributes of vertices

> g2.pol <- graph_from_data_frame(d=d.pol$d, directed=TRUE, vertices=d.pol$nod.at)

> g2.pol # Note the "attr" (attributes row)

IGRAPH bfccfea DN-B 17 23 --

+ attr: name (v/c), set (v/c), type (v/c), structure (v/c)

+ edges from bfccfea (vertex names):

[1] bp ->bp-b a ->2a bp-b->ba o ->pol g.bp->t.bp g.b ->t.b g.a ->t.a

[8] g.o ->t.o t.bp->bp t.b ->b t.a ->a t.o ->o b ->bp-b 2a ->ba

[15] ba ->pol pol ->t.bp pol ->t.b pol ->t.a pol ->t.o rib ->bp rib ->b

[22] rib ->a rib ->o

Produce an object with colors for g2.pol for attribute "set"

> col.d.pol.set <- map2rain(net=g2.pol, what="set")

The first component has the color that will be used

the second the color of each element (vertex)

Produce a plot with vertices colored by set (not shown)

> plot(g2.pol, vertex.color=col.d.pol.set$colors)

Improving the plot by modifying parameters

For layout:

> set.seed(2018) # (to obtain same results than here)

> temp <- layout_nicely(g2.pol)

Using that layout:

> old.par <- par() # Keeps parameters default

> par(mai=c(0,0,0,0)) # Modify that (see ? par)

See the plot with a "nice layout" and colored by "set"

Adding a legend with the meaning of the set colors

> plot(g2.pol, vertex.color=col.d.pol.set$colors, layout=temp)

> legend("topleft", legend=col.d.pol.set$col.key$types, pch=21,

pt.bg=col.d.pol.set$col.key$my.col, pt.cex=3.5, cex=1.8, bty="n", ncol=1)

Previous plot as "Figure 4" in text.

Now obtain the colors for "type"

> col.d.pol.type <- map2rain(net=g2.pol, what="type")

Obtain the plot with elements colored by type

setting the legend.

plot(g2.pol, vertex.color=col.d.pol.type$colors, layout=temp)

legend("topleft", legend=col.d.pol.type$col.key$types, pch=21,

pt.bg=col.d.pol.type$col.key$my.col, pt.cex=3.5, cex=1.8, bty="n", ncol=1)

39

40 Appendix: Computational examples.

Previous plot as "Figure 5" in text.

###################################### END BOX 24 ####################################

Figure 4. RNA polymerase network with elements colored by set of origin.

In BOX 24 we have seen how to color the synthesis network of the RNA polymerase (from the SI ‘pol.SI’)
by the set of origin of each one of the elements (Figure 4) or, alternatively by the ‘type’ of component of
each one of the elements (Figure 5).

From Figures 2, 4 and 5 can be seen how all the elements of the internal set of ‘SI2d’, i.e., the elements
for which synthesis information exist in the interactome, bp-b, 2a, ba, pol, t.bp, t.b, t.a, t.o,

bp, b, a and o form part of one or more ‘cycle’ or closed walk. This confirms that all those elements
fulfill the ER1, because if these elements form a cycle it means that their pre-existence is needed for their
synthesis. In these figures we also see that all genomic elements in the interactome, genes g.a, g.b,

g.bp and g.o which code for the corresponding essential peptides a, b, bp and o are also essential by
fulfilling ER2, i.e., they are direct operands of essential structures.

Figures 3 to 5 in the main text where produced following the same steps delineated here, i.e., first creating
a graph object with our auxiliar function ‘SI2d’, for a synthesis network and from this obtaining an igraph
object with the function ‘graph from data frame’, which then was plotted with elements colored by the
colors obtained with our auxiliar function ‘map2rain’.

To finish with the presentation of examples, BOX 25 shows the code to obtain the plots of the graph of
the synthesis interactome ‘str.SI’, which contains information for the synthesis of streptomycin.

40

https://en.wikipedia.org/wiki/Cycle_(graph_theory)

41 Appendix: Computational examples.

Figure 5. RNA polymerase network with elements colored by type of component.

BOX 25

Load the data and obtain str.SI

> data(int.SI)

> str.SI <- int.SI[int.SI$structure == "STR",]

Obtain an object from int.SI

> d.str <- SI2d(str.SI) # default to obtain "synthesis"

Obtains a graph from d.str using graph_from_data_frame

> g.str <- graph_from_data_frame(d=d.str$d, directed=TRUE, vertices=d.str$nod.at)

Set a nice layout for the plot

> set.seed(1959) # (to obtain same results than here)

> temp <- layout_nicely(g.str)

Obtain colors by set for the plot

> g.str.col.set <- map2rain(net=g.str, what="set")

Obtain colors by type of element

> g.str.col.type <- map2rain(net=g.str, what="type")

Obtain the plot of synthesis network colored by set

41

42 Appendix: Computational examples.

(Output shown in Figure 6)

tiff("plots/strSet.tiff")

par(mai=c(0,0,0,0))

plot(g.str, vertex.color=g.str.col.set$colors, edge.width=3, vertex.label.cex=1.2,

vertex.size=23, layout=temp, edge.arrow.size=0.5, vertex.label.font=2)

legend("bottomleft", legend=g.str.col.set$col.key$types, pch=21,

pt.bg=g.str.col.set$col.key$my.col, pt.cex=3.5, cex=2, bty="n", ncol=1)

dev.off()

Obtain the plot of synthesis network colored by type

(Output shown in Figure 7)

tiff("plots/strType.tiff")

par(mai=c(0,0,0,0))

plot(g.str, vertex.color=g.str.col.type$colors, edge.width=3, vertex.label.cex=1.2,

vertex.size=23, layout=temp, edge.arrow.size=0.5, vertex.label.font=2)

legend("topright", legend=g.str.col.type$col.key$types[1:4], pch=21,

pt.bg=g.str.col.type$col.key$my.col[1:4], pt.cex=3.5, cex=2, bty="n", ncol=1)

legend("bottomleft", legend=g.str.col.type$col.key$types[5:6], pch=21,

pt.bg=g.str.col.type$col.key$my.col[5:6], pt.cex=3.5, cex=2, bty="n", ncol=1)

dev.off()

###################################### END BOX 25 ####################################

Figure 6. Streptomycin synthesis network with elements colored by set of origin (for
definitions of names see Table 5 in main text).

From figures 6 and 7 we can see that none of the elements of the synthesis network for a cycle or closed
walk, reflecting the facts that within the context of the ‘str.SI’ none of its elements can be classified as
essential.

42

43 Appendix: Computational examples.

Figure 7. Streptomycin synthesis network with elements colored by type of element (for
definitions of names see Table 5 in main text).

S1-8. Conclusions and perspectives

We have seen how the functions contained in our ‘InterPlay’ package help to classify the elements of a
synthesis interactome (SI) as ‘essential’ or ‘non essential’, always in the framework of the information
contained in the SI. We have also seen how plotting the networks among elements of the SI helps in the
understanding of the information contained within them, reflecting essentiality of elements as cycles of
synthesis.

We expect that the gathering of interactome information can be automatized from different data bases
to have a comprehensive SI for the minimal cell, as proposed in the main text.

References

Bang-Jensen J and Gutin GZ (2008) Digraphs: theory, algorithms and applications. Springer Science &
Business Media.

Berquist BR, DasSarma P, and DasSarma S (2007) Essential and non-essential dna replication genes in
the model halophilic archaeon, halobacterium sp. nrc-1. BMC genetics, 8, 31.

Blomen VA, Májek P, Jae LT, Bigenzahn JW, Nieuwenhuis J, Staring J, Sacco R, van Diemen FR, Olk
N, Stukalov A, et al. (2015) Gene essentiality and synthetic lethality in haploid human cells. Science,
350, 1092–1096.

Csardi G and Nepusz T (2006) The igraph software package for complex network research. InterJournal,
Complex Systems, 1695. URL http://igraph.org.

Flatt PM and Mahmud T (2007) Biosynthesis of aminocyclitol-aminoglycoside antibiotics and related
compounds. Natural product reports, 24, 358–392.

Gerdes S, Scholle M, Campbell J, Balazsi G, Ravasz E, Daugherty M, Somera A, Kyrpides N, Anderson
I, Gelfand M, et al. (2003) Experimental determination and system level analysis of essential genes in
escherichia coli mg1655. Journal of bacteriology, 185, 5673–5684.

43

http://igraph.org

44 Appendix: Computational examples.

Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen K, Arnaud M, Asai K, Ashikaga S, Aymerich
S, Bessieres P, et al. (2003) Essential bacillus subtilis genes. Proceedings of the National Academy of
Sciences, 100, 4678–4683.

R Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Schatz A, Bugle E, and Waksman SA (1944) Streptomycin, a substance exhibiting antibiotic activity
against gram-positive and gram-negative bacteria.? Proceedings of the Society for Experimental Biology
and Medicine, 55, 66–69.

Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, Lander ES, and Sabatini DM (2015)
Identification and characterization of essential genes in the human genome. Science, 350, 1096–1101.

44

https://www.R-project.org/

	S1-1. The C2E algorithm applied to the RNA polymerase SI
	S1-2. The C2E algorithm applied to the streptomycin SI
	S1-3. Implications of the C2E algorithm
	S1-4. Notes and prerequisites
	S1-5. Computational representation of synthesis interactomes (SIs)
	S1-5.1. Latent sets in an SI
	S1-5.2. The `condensed to expanded' (C2E) algorithm
	S1-5.3. Avoiding infinite loops in the search for expanded formulae

	S1-6. Distinguishing essential cell elements in SIs
	S1-6.1. Analysis of a more realistic SI

	S1-7. Visualizing SI relations with graph theory
	S1-7.1. `binding' and `synthesis' networks from the RNA polymerase SI

	S1-8. Conclusions and perspectives
	References

