
	
Supplementary Figure 1. Validation of the genomic deletion in the Fmr1 gene. (A) 

Amplification product of the Fmr1 genomic region between exon 7 and 9 of the Fmr1 

gene, primed with the Fmr1-G-F and Fmr1-G-R primers (see Supplementary Table 3. 

(B) Depiction of the deleted sequence within the Fmr1 gene. Partial sequences of 

introns 7 and 8 are in blue, genomic sequence encoding for exon 8 is highlighted in 

green, and the deleted sequence that encompasses parts of intron 7 and exon 8 is bold-

red. (C) Sanger sequencing of the amplification product from Fmr1-ΔKH1-/y rats (from A), 

using the Fmr1-G-F primer. 
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Supplementary Figure 2. The Fmr1-ΔKH1 rat model lacks the KH1 domain. (A) An 

IP of Fmrp followed by a immunoblotting with anti-Fmrp antibodies shows a band at the 

predicted molecular weight of Fmrp (75 kDa) in WT but not Fmr1-ΔKH1-/y rats and a new 



band at ~70 kDa in Fmr1-ΔKH1-/y but not WT rats, which is predicted to be Fmrp-ΔKH1. 

(B) (Top) An illustration depicting the amino acids that are a part of the KH1 domain of 

Fmrp that are deleted from Fmrp in Fmr1-ΔKH1 rats. (Bottom) The location of a mutation 

within this domain that was previously reported in a subject with FXS. ClustalW 

alignment indicates that this region is 100% conserved across human and rat between 

amino acids 211-267 in Fmrp (deleted in the Fmr1-ΔKH1 rat model). (C) Sequence 

conservation of the KH1 domain across 58 FMRP orthologs. The colour code reflects the 

chemical and physical properties of the amino acids. The topological organization of the 

KH1 domain is also shown. The deleted residues and the corresponding secondary 

structure elements are shown in purple. The lower panel shows the ribbon 

representation of the human FMRP KH1 domain. The deleted region is indicated by a 

dashed line and shown in purple. 

  



 

 

 

 

 

 

 

 
Supplementary Figure 3. Testes:body weight ratio of Fmr1-ΔKH1-/y rats compared 

to WT littermates. When controlling for overall body weight, Fmr1-ΔKH1-/y rats (n=19) 

have increased testes weight compared to WT littermates (n=19), a hallmark of FXS. 
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Supplementary Figure 4. Performance of male Fmr1-ΔKH1-/y rats and WT 

littermates on the open field test. Male WT, n=6 (black), and Fmr1-ΔKH1, n=7 (red) 

littermates were given one hour to explore a 90 cm x 90 cm open field. Videos were 

analyzed in 10-minute bins. Both groups decrease in their velocity over time.  
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Supplementary Figure 5. Performance of male Fmr1-ΔKH1-/y rats and WT 

littermates on the Barnes maze. Male WT, n=6 (black), and Fmr1-ΔKH1, n=7 (red), 

littermates were trained on the Barnes maze to find a target hole with an escape box 

over four days (training), given a probe test without the escape box, trained to find a hole 

on the opposite size of the maze (reversal), given another probe test, and, finally, tested 

two weeks later (long-term probe). (A) The time it took for the rat to initially find the hole 

and (B) enter it during the training phase. (C) The percentage of time the rat spent in the 

quadrant of the maze containing the target hole during the probe test. (D) The time it 

took for the rat to initially find the hole and (E) enter it during the reversal phase. The 

percentage of time the rat spent in the quadrant of the maze containing the (F) target 
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hole and (G) reversal hole during the reversal probe test. The percentage of time the rat 

spent in the quadrant of the maze containing the (H) target hole and (I) reversal hole 

during the long-term probe test two weeks later.  

  



	

	

Supplementary Figure 6. Latency to collect reward and premature responses in 

Fmr1-ΔKH1 rats and WT littermates on the 5-CSRTT. Across six 5-CSRTT training 

stages, bars indicate (A) mean latency to collect reward ± SEM (WT, n = 22; Fmr1-
ΔKH1, n = 20), (B) mean number of total trials completed each session, and (C) mean 

percentage of premature responses in male and female rats, black = WT, red = Fmr1-
ΔKH1, open circles = males, filled circles = females, ***p < 0.001, **p < 0.01, *p < 0.05. 
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Supplementary Figure 7. Performance of male and female Fmr1-ΔKH1 rats and WT 

littermates on the 5-CSRTT. Across six 5-CSRTT training stages, bars indicate (A) 

mean latency to collect reward and (B) mean percentage of perseverative responses 

after a correct choice in males and females ± SEM (males, n = 22; females, n = 32), 

green = male, blue = female, open circles = WT, filled circles = Fmr1-ΔKH1, ***p < 0.001, 

**p < 0.01, *p < 0.05. 
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Supplementary Figure 8. Performance of WT, Fmr1-ΔKH1+/-, and Fmr1-ΔKH1-/- rats 

on the 5-CSRTT. (A) Across six 5-CSRTT training stages, bars indicate mean number 

of sessions required to reach criterion ± SEM (WT, n = 10; Fmr1-ΔKH1+/-, n = 12; Fmr1-
ΔKH1-/-, n = 10), (B) mean accuracy (# correct / # total responses), (C) mean percentage 

of trials that were omitted, (D) mean percentage of trials with a late response, (E) mean 

latency to perform a correct response, (F) mean percentage of trials with a premature 
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response, (G) mean number of total trials completed each session, and (H) mean 

latency to collect a reward, black = WT, blue = Fmr1-ΔKH1+/-, red = Fmr1-ΔKH1-/-, ***p < 

0.001, **p < 0.01, *p < 0.05. 

  



 

Supplementary Figure 9. RNAseq analysis pipeline. An illustration of the pipeline 

applied for RNAseq analysis starting with library preparation, sequencing, quality control 

steps to inspect both, the raw data and the aligned reads, alignment to reference 

genome, normalization and outlier inspection, validation of the deletion, and finally 

differential gene expression and co-expression analysis (see the Methods section for 

details).    
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Supplementary Figure 10. RNA-seq quality control and data pre-processing. (A) 

Conditional quantile normalization (CQN) boxplots and (B) relative log expression (RLE) 

gene expression across Fmr1-ΔKH1 and WT rats. (C) Principal component analysis 

(PCA) of CQN normalized expression data with an ellipse fit two standard deviations 

from the grand mean. (D) variancePartition analysis of global gene expression profiles 
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identifies genes with variance is explained by RIN, parents, genotype (Fmr1-ΔKH1 and 

WT) age and dissection date. (E) The top 20 genes who variance (>50%) is explained 

by differences in genotype and (F) their functional annotation. (G) Cibersort cell type 

deconvolution analysis of global expression profiles across Fmr1-ΔKH1-/y and WT 

samples. (H) PCA was applied using all genes with DGE signatures passing FDR P < 

0.1. The resulting PC1 was associated with measurable factors, including genotype, 

parents, RIN, age, date of dissection and estimated cell type frequencies. PC1 was 

predominately associated with differences in genotype and not with any other factors.  

  



 

	

Supplementary Figure 11. Skipping of Exon 8 of Fmr1 mRNA based on RNAseq 

data. (A) Top: Sashimi plots for WT samples created using RNAseq show the coverage 

for each alignment track plotted as a bar graph. Arcs display splice junctions that 

connect exons and contain the number of reads split across the junction (junction depth). 

Genomic coordinates and the gene annotation track are shown below the junction 

tracks. Bottom: An illustration that shows that exon 8 is read in WT rats. (B) Top: 

Sashimi plots for Fmr1-ΔKH1-/y samples. Bottom: An illustration that shows that the 

sequence of exon 8 is skipped, but exon 7 and 9 are in frame in Fmr1-ΔKH1-/y rats. 
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Supplementary Figure 12. Enrichment of differential gene expression signatures. 

Down-regulated Fmr1-ΔKH1-/y DGE signatures are enriched for Fmrp targets and SCZ 

genetic risk loci.  
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Supplementary Figure 13. Batch correction for RNA-sequencing data of mPFC 

from three independent batches of WT rats. (A) Multi-dimensional scaling (MDS) and 

(B) unsupervised hierarchical clustering (Euclidian distance and ward’s clustering) 

revealing a substantial fraction of variability in gene expression explained by batch 

effects. (C) MDS and (D) unsupervised clustering following combat correction, indicating 

reduced batch effects by processing date.  
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