Supplementary Information

Culturing the ubiquitous freshwater actinobacterial acI lineage by supplying a biochemical 'helper' catalase

Suhyun Kim, Ilnam Kang, Ji-Hui Seo, and Jang-Cheon Cho*

Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea

*Correspondence to: chojc@inha.ac.kr

Supplementary Text

- **Supplementary Figure 1.** Maximum-likelihood tree based on 16S rRNA gene sequences showing the phylogenetic position of strains IMCC25003 and IMCC26103.
- Supplementary Figure 2. Revival and transfer cultures of strains IMCC25003 and IMCC26103.
- **Supplementary Figure 3.** Growth curves of strains IMCC25003 (a) and IMCC26103 (b) obtained from the revival experiment of frozen glycerol stocks using the culture medium (FAMV+CM+AA) supplemented with catalase.
- **Supplementary Figure 4.** Genome sequencing using the genomic DNA extracted from cultured and harvested cell pellets of the acI strains.
- **Supplementary Figure 5.** Increase of IMCC25003 *katG* expression with increasing concentration of H₂O₂ treatment.
- **Supplementary Figure 6.** Expression, purification, and determination of native molecular weight of recombinant IMCC25003 KatG.
- **Supplementary Figure 7.** Catalase and peroxidase activities of purified IMCC25003 KatG and bovine catalase (KatE).
- Supplementary Figure 8. Kinetic curves of H₂O₂ decomposition by IMCC25003 KatG and bovine catalase.
- **Supplementary Figure 9.** Growth curves of strain IMCC25003 (a) and strain IMCC26103 (b) at varying temperature conditions.
- Supplementary Table 1. Media used in this study and their composition.
- Supplementary Table 2. Trials to establish pure culture of strain IMCC25003.
- Supplementary Table 3. Kinetic parameters of various catalase-peroxidases and bovine catalase.

Supplementary Table 4. List of acI genomes used in this study and the presence or absence of *katG* gene.

Supplementary Table 5. Fatty acids composition (%) of two acI strains

Supplementary References

Supplementary Text

Description of two proposed 'Candidatus' species

The average nucleotide identity (ANI) value calculated from genome sequences between strain IMCC25003 and '*Ca*. Planktophila sulfonica' MMS-IA-56 was 84% and between strains MCC26103 and '*Ca*. Planktophila lacus' MMS-21-148 was 78%, which were both below the 95~96% cut-off value for bacterial species demarcation^{1,2}. The analysis of genomic DNA-DNA relatedness and differential phenotypic characteristics indicated that strains IMCC25003 and IMCC26103 each represent novel species of the genus '*Candidatus* Planktophila'. Because the two strains, however, did not grow on a defined medium or a synthetic medium but replicated only in complex natural lake water media, hampering the deposition of the acI strains in culture collections, we propose the provisional names '*Candidatus* Planktophila rubra' for strain IMCC25003 and '*Candidatus* Planktophila aquatilis' for strain IMCC26103.

'Candidatus Planktophila rubra' (ru'bra. L. fem. adj. rubra reddish, pertaining to the reddish color of cells)

Represented by a cultured bacterial strain, IMCC25003. Gram-positive, aerobic, red-pigmented, nonmotile, and chemoheterotrophic. Cells are curved rods with biovolume of 0.041 μ m³, 0.46–1.23 μ m (average 0.68 μ m) long and 0.25–0.37 μ m (average 0.30 μ m) wide. Grows in FAMV+CM+AA supplemented with >0.5 U ml⁻¹ catalase but does not grow in any liquid medium devoid of catalase and on any solid agar medium. Growth occurs at 10–30°C (optimum, 25°C). No single carbon sources enhance the cellular growth. Requires sulfurcontaining amino acids (methionine and cysteine) but prefers methionine. The major fatty acids (>10%) are summed feature 3 (C_{16:1} ω 7*c* and/or C_{16:1} ω 7*c*, 45.8%), C_{16:0} (23.1%), and C_{14:0} (18.2%). Strain IMCC25003 has a genome size of 1.354 Mbp with DNA G+C content of 49.1%. The complete genome sequence of strain IMCC25003 is available on GenBank (CP029557). Phylogenetically belongs to the acI-A1 tribe.

The representative strain IMCC25003 was isolated from a freshwater lake, Lake Soyang, Republic of Korea, using a dilution-to-extinction culturing.

'*Candidatus* Planktophila aquatilis' (a.qua.ti'lis. L. fem. adj. *aquatilis* living, growing, or found, in or near water, aquatic).

Represented by a cultured bacterial strain, IMCC26103. Gram-positive, aerobic, red-pigmented, nonmotile, and chemoheterotrophic. Cells are curved rods with biovolume of 0.061 μ m³, 0.49–1.23 μ m (average 0.88 μ m) long and 0.22–0.39 μ m (average 0.31 μ m) wide. Grows in FAMV+CM+AA supplemented with >0.5 U ml⁻¹ catalase but does not grow in any liquid medium devoid of catalase and on any solid agar medium. Growth occurs at 10–30°C (optimum, 25°C). D-ribose and D-glucose enhance the cellular growth. Requires sulfurcontaining amino acids (methionine and cysteine) but prefers cysteine. The major fatty acids (>10%) are C_{16:0} (28.5%), C_{18:1} ω 9*c* (25.8%), summed feature 3 (C_{16:1} ω 7*c* and/or C_{16:1} ω 7*c*, 12.3%), and C_{18:0} (10.5%). Strain IMCC26103 has a genome size of 1.457 Mbp with DNA G+C content of 47.0%. The complete genome sequence of strain IMCC26103 is available on GenBank (CP029558). Phylogenetically belongs to the acI-A4 tribe.

The representative strain IMCC26103 was isolated from a freshwater lake, Lake Soyang, Republic of Korea, using a dilution-to-extinction culturing.

Supplementary Figures

Supplementary Figure 1. Maximum-likelihood tree based on 16S rRNA gene sequences showing the phylogenetic position of strains IMCC25003 and IMCC26103. The two strains isolated in this study are marked in red. *Streptomyces sannanensis* (AB184579) and *Streptomyces griseus* (AY999909) were used as outgroup. Bootstrap supporting values (from 600 replicates) are shown at the nodes as filled circles (\geq 90%), half-filled circles (\geq 70%), and empty circles (\geq 50%). Bar, 0.10 substitutions per nucleotide position.

Supplementary Figure 2. Revival and transfer cultures of strains IMCC25003 and IMCC26103. (a) The growth curve of a revival culture of strain IMCC26103. (b) Flow cytometry plots of strain IMCC26103 obtained at the time points indicated in (a). Left, histograms showing the distribution of cell counts (y axis) according to the green fluorescence (x axis); Right, dot plots showing the distribution of cells according to side scatter (x axis) and green fluorescence (y axis). (c) Revival and two subsequent transfer cultures of strain IMCC25003.

Supplementary Figure 3. Growth curves of strains IMCC25003 (a) and IMCC26103 (b) obtained from the revival experiment of frozen glycerol stocks using the culture medium (FAMV+CM+AA) supplemented with catalase. The triangle symbol represents growth in the medium amended with 10 U ml⁻¹ catalase, and the circle symbol represents growth in the medium without catalase.

Supplementary Figure 4. Genome sequencing using the genomic DNA extracted from cultured and harvested cell pellets of the acI strains. (a) Cell pellets obtained by centrifugation from 4 L cultures of IMCC25003 (upper) and IMCC26103 (lower). Genomic DNA extracted from these cell pellets were used for genome sequencing. (b) Coverage variation across the complete genome sequences of the acI strains. The two coverage plots above red arrow were obtained from our previous study using whole genome amplification (WGA)³. The two coverage plots below the arrow were obtained from this study using large-scale cultures without WGA. Coverage variation was calculated using a 25-bp window based on read mapping. Bar heights were normalized in each plot and the maximum coverages are indicated at the upper left corner of each plot.

Supplementary Figure 5. Increase of IMCC25003 *katG* expression with increasing concentration of H_2O_2 treatment. Cells of IMCC25003 were treated with 3 different H_2O_2 concentrations (10 µM, 50 µM, and 100 µM) for 30 min and total RNA was used for the analysis of *katG* expression by qPCR. Expression level of *katG* in H_2O_2 -treated cultures was compared with that in the control cultures (no H_2O_2 treatment). FAMV+CM+AA was used as the culture medium. Error bars indicate standard deviations (*n*=3).

Supplementary Figure 6. Expression, purification, and determination of native molecular weight of recombinant IMCC25003 KatG. (a) Expression of IMCC25003 KatG in *E. coli* analyzed by SDS-PAGE. The bold arrow indicates a band of KatG, which is approximately 82.6 kDa. M, molecular weight size marker; control, before induction of expression; sup, supernatant; pellet, cell debris and membrane. Purified IMCC25003 KatG bound to a Ni²⁺-nitrilotriacetic acid affinity column (b) and the purified protein through a size exclusion superpose-12 column (c), confirmed by SDS-PAGE. M, molecular weight size marker; f.t., unbound flow through fraction. Chromatograms (d) of protein-molecular-weight size markers and IMCC25003 KatG, and the molecular-weight calibration curve (e) obtained from protein-molecular-weight size markers and IMCC25003 KatG.

Supplementary Figure 7. Catalase and peroxidase activities of purified IMCC25003 KatG and bovine catalase (KatE). Bovine catalase [0.005 (0.01 unit), 0.05 (0. 1 unit), and 0.5 (1 unit) μ g] and IMCC25003 KatG (0.005, 0.05, 0.5, 1, 5, and 10 μ g) of IMCC25003 KatG were separated by 8% non-denaturing PAGE. The bold arrows indicate negatively stained catalase activity and the narrow arrow indicates peroxidase activity stained by 3,3',5,5'-tetramethylbenzidine.

Supplementary Figure 8. Kinetic curves of H_2O_2 decomposition by IMCC25003 KatG and bovine catalase. The curves of absorbance at 240 nm over time were generated using varying quantities of (a) bovine catalase (0–1.0 μ g) and (b) IMCC25003 KatG (0 –5.0 μ g).

Supplementary Figure 9. Growth curves of strain IMCC25003 (a) and strain IMCC26103 (b) at varying temperature conditions.

Supplementary Tables

Components of media					
Components (abbreviation)	Compound(s)	Final concentration			
Ammonium (N)	NH ₄ Cl	10 µM			
Phosphate (P)	KH ₂ PO ₄	10 μM			
Trace metals (TM)	FeCl ₃ ·6H ₂ O	117 nM			
	MnCl ₂ ·4H ₂ O	9 nM			
	ZnSO ₄ ·7H ₂ O	800 pM			
	CoCl ₂ ·6H ₂ O	500 pM			
	Na ₂ MoO ₄ ·2H ₂ O	300 pM			
	Na ₂ SeO ₃	1 nM			
	NiCl ₂ ·6H ₂ O	1 nM			
Vitamin mixture (V)	Thiamine·HCl	59 nM			
	Niacin	81 nM			
	Ca-Pantothenate	84 nM			
	Pyridoxine	59 nM			
	Biotin	409 pM			
	Folic acid	453 pM			
	Vitamin B12	70 pM			
	Myo-inositol	555 nM			
	p-Aminobenzoic Acid	7 nM			
Carbon mixture (CM)	Pyruvate	50 µM			
	D-Glucose	5 μΜ			
	N-Acetyl-D-glucosamine	5 μΜ			
	D-Ribose	5 μΜ			
	Methyl alcohol	5 μΜ			
20 proteinogenic amino acid mixture (AA)	Each amino acid	100 nM, each			
Media definition					
Media	Definition				
FAM	0.2 µm-filtered and autoclaved freshwater				
	medium supplemented with N, P, and TM				
FAMV	FAM supplemented with V				
FAMV+CM	FAMV supplemented with CM				
FAMV+AA	FAMV supplemented with AA				
FAMV+CM+AA	FAMV supplemented with CM and AA				

Supplementary Table 1. Media used in this study and their composition.

Trial	Media composition	Additional substrate	Reference
1st attempt	FAMV		
	FAMV+CM		
	FAMV+AA	0.5×, 1×, 5×, and 10× of CM	
	AFM ^a +V+CM+AA		
	FM ^b +V+CM+AA		
2nd attempt	FAMV+CM+AA	20 µM acetate	[4]
		20 µM oxaloacetate	[5]
		20 µM putrescine	[5,6]
		20 µM glycerol	[5]
		20 µM xylose	[6,7]
		1 mg L ⁻¹ proteose peptone No. 3	
		1 mg L ⁻¹ yeast extract	
3rd attempt	FAMV+CM+AA	1:20 diluted spent medium ^c	[6,8], This study
4th attempt	FAMV+CM+AA	10 U ml ⁻¹ catalase	

Supplementary Table 2. Trials to establish pure culture of strain IMCC25003.

^aAFM, Artificial freshwater medium⁹. ^bFM, 0.1 µm-filtered but non-autoclaved freshwater medium. ^cSpent medium, a spent medium of the genus *Limnohabitans* filtrated through 0.1 µm pore-size membrane after cultivation of *Limnohabitans* sp. IMCC26003. For the media abbreviations, refer to Supplementary Table 1.

Source	Molecular weight	Structure	Specific activity (Units mg ⁻¹)	Km (mM)	$k \text{cat}(s^{-1})$	$k \text{cat}/K \text{m} (\text{M}^{-1} \text{ s}^{-1})$	pI	Reference
IMCC25003ª	165,000	A2	179.3	11.7	9.05×10^2	$8.01 imes 10^4$	7.6 ^b	This study
Archaeoglobus fulgidus ^a	NA	NA	5,280	3.8	7.77×10^3	$2.04 imes 10^6$	5.6 ^b	[10]
Bacillus selenatarsenatis SF-1	165,000	A2	3,375	2.6	$1.15 imes 10^4$	4.41×10^{6}	6.0	[11]
Burkholderia pseudomalleiª	NA	NA	3,630	4.5	5.68×10^3	1.26×10^{6}	5.9 ^b	[10]
Escherichia coli K10	337,000	A4	1,486.5	3.9	1.63×10^4	$4.19 imes 10^6$	5.1 ^b	[12]
Escherichia coli O157:H7	NA	NA	NA	4.0	1.40×10^4	$3.50 imes 10^6$	5.1 ^b	[13]
Geobacillus stearothermophilus ^a	NA	NA	3,120	4.4	1.40×10^3	$3.18 imes 10^5$	5.2	[14]
Halobacterium salinarum	240,000	A4	43.2	3.7	NA	NA	3.8	[15]
Mycobacterium smegmatis	NA	NA	NA	1.4	2.38×10^3	$1.70 imes 10^6$	5.0 ^b	[16]
Mycobacterium tuberculosis ^a	175,000	A2	2,420	5.2	1.01×10^4	$1.94 imes 10^6$	5.1	[17]
Rhodobacter capsulatus	236,000	A4	7,800	4.2	NA	NA	4.5	[18]
Rhodobacter capsulatus ^a	NA	NA	4,830	3.7	6.64×10^{3}	$1.79 imes 10^6$	5.1 ^b	[10]
Synechococcus elongatus PCC 6301ª	165,000	A2	1,491	4.8	$8.85 imes 10^3$	$1.84 imes 10^6$	4.6	[19]
Synechococcus elongatus PCC 6301	165,000	A2	NA	4.3	7.20×10^{3}	$1.67 imes 10^6$	5.1 ^b	[20]
Synechococcus elongates PCC 7942 ^a	NA	NA	NA	4.2	2.60×10^4	$6.19 imes 10^6$	5.1 ^b	[21]
Synechocystis sp. PCC 6803 ^a	170,000	A2	5,420	4.9	3.50×10^{3}	7.14×10^2	5.4	[22]
Thermoascus aurantiacus	330,000	A4	NA	48.0	$1.07 imes 10^5$	2.22×10^6	4.5	[23]
Thermus brockianus	178,000	A4	5,300	35.5	6.00×10^3	1.69×10^{5}	4.7	[24]
Bos taurus ^c	240,000	A4	1980.3	20.6	9.05×10^4	8.01×10^4	5.4	This study

Supplementary Table 3. Kinetic parameters of various catalase-peroxidases and bovine catalase.

^aBiochemical properties were determined using recombinant catalase-peroxidase. ^bTheoretical pI values were estimated based on amino acids sequences. ^cThe monofunctional bovine catalase which was amended to culture media of IMCC25003 was used as an experimental positive control. NA, not available.

15

Supplementary Table 4. List of acI genomes used in this study and the presence or absence of *katG* gene.

Tribe	Organism name	Genome ID	Isolation site	Complete	No. of Scaffolds	Genome size (bp)	Length of KatG (aa)
A1	Actinobacteria bacterium IMCC25003	2602042019ª	Lake Soyang	0	1	1,353,947	746
	actinobacterium SCGC AAA278-O22	2236661007ª	Lake Mendota	Х	43	1,138,490	Х
	actinobacterium SCGC AAA027-M14	2236661003ª	Lake Mendota	Х	22	822,296	725
	'Ca. Planktophila dulcis' MMS-IIA-65	CP016777 ^b	Lake Zurich	0	1	1,348,019	732
	'Ca. Planktophila dulcis' MMS-IA-53	CP016772 ^b	Lake Zurich	0	1	1,365,934	732
	'Ca. Planktophila dulcis' MMS-21-155	CP016770 ^b	Lake Zurich	0	1	1,361,776	732
	'Ca. Planktophila sulfonica' MMS-IA-56	CP016773 ^b	Lake Zurich	0	1	1,344,614	747
	'Ca. Planktophila versatilis' MMS-IIB-76	CP016778 ^b	Lake Zurich	0	1	1,325,420	733
	'Ca. Planktophila versatilis' MMS-IA-79	CP016774 ^b	Lake Zurich	0	1	1,331,009	733
	'Ca. Planktophila versatilis' MMS-IA-105	CP016775 ^b	Lake Zurich	0	1	1,326,591	733
	'Ca. Planktophila versatilis' MMS-IIB-142	CP016781 ^b	Lake Zurich	0	1	1,266,983	733
A2	'Ca. Planktophila limnetica' MMS-VB-114	CP016782 ^b	Lake Zurich	0	1	1,328,793	722
A4	Actinobacteria bacterium IMCC26103	2602042020ª	Lake Soyang	0	1	1,456,516	Х
	'Ca. Planktophila lacus' MMS-IIB-106	CP016780 ^b	Lake Zurich	0	1	1,384,812	721
	'Ca. Planktophila lacus' MMS-IIB-60	CP016783 ^b	Lake Zurich	0	1	1,410,107	721
	'Ca. Planktophila lacus' MMS-21-148	CP016769 ^b	Lake Zurich	0	1	1,460,061	721
A5	actinobacterium SCGC AAA044-O16	2606217200ª	NA	Х	17	1,313,698	718
	actinobacterium SCGC AAA028-G02	2606217191ª	NA	Х	18	1,231,401	718
A6	actinobacterium SCGC AAA028-E20	2602042080ª	NA	Х	19	727,714	Х
	actinobacterium SCGC AAA028-I14	2619618809ª	NA	Х	11	623,569	717
A7	Actinobacteria bacterium IMCC19121	2606217181ª	Lake Soyang	0	1	1,506,415	Х
	actinobacterium SCGC AAA044-N04	2236661005ª	Damariscotta Lake	Х	23	1,286,658	718
	actinobacterium SCGC AAA024-D14	2264265190ª	Sparkling Lake	Х	82	778,696	Х
	actinobacterium SCGC AAA023-J06	2236661001ª	Sparkling Lake	Х	98	695,943	Х
	'Ca. Planktophila vernalis' MMS-IIA-15	CP016776 ^b	Lake Zurich	0	1	1,364,004	718

16

B1	actinobacterium SCGC AAA027-L06	2505679121ª	Lake Mendota	Х	75	1,163,583	Х
	actinobacterium SCGC AAA027-J17	2236661002ª	Lake Mendota	Х	81	966,755	Х
	actinobacterium SCGC AAA278-I18	2236661006ª	Damariscotta Lake	Х	54	944,397	Х
	actinobacterium SCGC AAA028-A23	2236661004ª	Lake Mendota	Х	64	833,294	Х
	actinobacterium SCGC AAA023-D18	2236661009ª	Sparkling Lake	Х	67	753,259	Х
	actinobacterium SCGC AB141-P03	2236876028ª	Lake Stechlin	Х	66	660,403	Х
	'Ca. Nanopelagicus limnes' MMS-21-122	CP016768 ^b	Lake Zurich	0	1	1,238,108	Х
	'Ca. Nanopelagicus hibericus' MMS-21-160	СР016771 ^ь	Lake Zurich	0	1	1,223,088	Х
	'Ca. Nanopelagicus abundans' MMS-IIB-91	CP016779 ^b	Lake Zurich	0	1	1,161,863	Х
B4	actinobacterium SCGC AAA044-D11	2619618811ª	NA	Х	18	1,095,756	719
C1	Actinobacteria bacterium IMCC26077	2602042021ª	Lake Soyang	0	1	1,551,612	Х

^aIMG Genome ID (IMG Taxon ID). ^bGenBank accession number. NA, not available.

17

Fatty acid	IMCC25003	IMCC26103
Saturated fatty acids		
C10:0		0.46
C12:0	1.64	7.93
C14:0	18.22	7.85
C16:0	23.11	28.45
C17:0		1.05
C18:0	2.14	10.49
Unsaturated fatty acids		
C15:1 ω6 <i>c</i>	1.11	
C17:1 ω8 <i>c</i>	2.31	1.35
C18:1 ω9 <i>c</i>	2.10	25.80
summed feature 3 (16:1 ω7 <i>c</i> /16:1 ω6 <i>c</i>)	45.79	12.28
summed feature 5 (18:2 ω 6,9 <i>c</i> /18:0 ante)		0.99
summed feature 8 (18:1 ω7 <i>c</i> , 18:1 ω6 <i>c</i>)	3.58	3.36

Supplementary Table 5. Fatty acids composition (%) of two acI strains.

Supplementary References

- Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species definition for prokaryotes. *Proc. Natl. Acad. Sci. USA.* 102, 2567-2572 (2005).
- Kim, M., Oh, H. S., Park, S. C. & Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. *Int. J. Syst. Evol. Microbiol.* 64, 346-351 (2014).
- Kang, I., Kim, S., Islam, M. R. & Cho, J.-C. The first complete genome sequences of the acl lineage, the most abundant freshwater *Actinobacteria*, obtained by whole-genome-amplification of dilution-toextinction cultures. *Sci. Rep.* 7, 42252 (2017).
- Buck, U., Grossart, H.-P., Amann, R. & Pernthaler, J. Substrate incorporation patterns of bacterioplankton populations in stratified and mixed waters of a humic lake. *Environ. Microbiol.* 11, 1854-1865 (2009).
- Ghylin, T. W. et al. Comparative single-cell genomics reveals potential ecological niches for the freshwater acl Actinobacteria lineage. *ISME J* 8, 2503-2516 (2014).
- 6. Garcia, S. L., McMahon, K. D., Grossart, H.-P. & Warnecke, F. Successful enrichment of the ubiquitous freshwater acl *Actinobacteria*. *Environ*. *Microbiol*. *Rep.* **6**, 21-27 (2014).
- Garcia, S. L. et al. Metabolic potential of a single cell belonging to one of the most abundant lineages in freshwater bacterioplankton. *ISME J* 7, 137-147 (2013).
- Jezbera, J., Sharma, A. K., Brandt, U., Doolittle, W. F. & Hahn, M. W. '*Candidatus* Planktophila limnetica', an actinobacterium representing one of the most numerically important taxa in freshwater bacterioplankton. *Int. J. Syst. Evol. Microbiol.* 59, 2864-2869 (2009).
- Kim, S., Kang, I. & Cho, J. C. Genomic Analysis of a Freshwater Actinobacterium, "*Candidatus* Limnosphaera aquatica" Strain IMCC26207, Isolated from Lake Soyang. *J. Microbiol. Biotechnol.* 27, 825-833 (2017).
- Singh, R. et al. Comparative study of catalase-peroxidases (KatGs). Arch. Biochem. Biophys. 471, 207-214 (2008).

- 11. Gudelj, M. et al. A catalase-peroxidase from a newly isolated thermoalkaliphilic *Bacillus* sp. with potential for the treatment of textile bleaching effluents. *Extremophiles* **5**, 423-429 (2001).
- Claiborne, A. & Fridovich, I. Purification of the o-dianisidine peroxidase from *Escherichia coli* B.
 Physicochemical characterization and analysis of its dual catalatic and peroxidatic activities. *J. Biol. Chem.* 254, 4245-4252 (1979).
- Varnado, C. L., Hertwig, K. M., Thomas, R., Roberts, J. K. & Goodwin, D. C. Properties of a novel periplasmic catalase-peroxidase from *Escherichia coli* O157 : H7. *Arch. Biochem. Biophys.* 421, 166-174 (2004).
- Kobayashi, C. et al. Thermal conversion from low- to high-activity forms of catalase I from *Bacillus* stearothermophilus. J. Biol. Chem. 272, 23011-23016 (1997).
- Brownpeterson, N. J. & Salin, M. L. Purification of a catalase-peroxidase from *Halobacterium halobium*: characterization of some unique properties of the halophilic enzyme. J. Bacteriol. 175, 4197-4202 (1993).
- Marcinkeviciene, J. A., Magliozzo, R. S. & Blanchard, J. S. Purification and characterization of the *Mycobacterium smegmatis* catalase-peroxidase involved in isoniazid activation. J. Biol. Chem. 270, 22290-22295 (1995).
- 17. Johnsson, K., Froland, W. A. & Schultz, P. G. Overexpression, purification, and characterization of the catalase-peroxidase KatG from *Mycobacterium tuberculosis. J. Biol. Chem.* **272**, 2834-2840 (1997).
- 18. Hochman, A. & Shemesh, A. Purification and characterization of a catalase-peroxidase from the photosynthetic bacterium *Rhodopseudomonas capsulata*. J. Biol. Chem. **262**, 6871-6876 (1987).
- 19. Engleder, M. et al. Nucleotide sequence analysis, overexpression in *Escherichia coli* and kinetic characterization of *Anacystis nidulans* catalase-peroxidase. *Biochimie* **82**, 211-219 (2000).
- Obinger, C., Regelsberger, G., Strasser, G., Burner, U. & Peschek, G. A. Purification and characterization of a homodimeric catalase-peroxidase from the cyanobacterium *Anacystis nidulans*. *Biochem. Biophys. Res. Commun.* 235, 545-552 (1997).
- Mutsuda, M., Ishikawa, T., Takeda, T. & Shigeoka, S. The catalase-peroxidase of *Synechococcus* PCC 7942: purification, nucleotide sequence analysis and expression in *Escherichia coli*. *Biochem. J.* 316, 251-257 (1996).

- 22. Jakopitsch, C. et al. Catalase-peroxidase from the cyanobacterium *Synechocystis* PCC 6803: cloning, overexpression in *Escherichia coli*, and kinetic characterization. *Biol. Chem.* **380**, 1087-1096 (1999).
- Wang, H. X., Tokusige, Y., Shinoyama, H., Fujii, T. & Urakami, T. Purification and characterization of a thermostable catalase from culture broth of *Thermoascus aurantiacus*. J. Ferment. Bioeng. 85, 169-173 (1998).
- 24. Thompson, V. S., Schaller, K. D. & Apel, W. A. Purification and characterization of a novel thermoalkali-stable catalase from *Thermus brockianus*. *Biotechnol. Prog.* **19**, 1292-1299 (2003).