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1 Analytical theory

1.1 One pulse model

An introgression of intensity f can be modeled as an injection of alleles at frequency f into
a population. Each allele represents an introgressed haplotype, which will then undergo
genetic drift until the present, at which time it is sampled at some (random) frequency.
The Wright-Fisher diffusion model of genetic drift enables us to calculate the sampling
probabilities after drift by computing

pn,k(t; f) =

∫ 1

0

(
n

k

)
yk(1− y)n−kφ(f, y; t)dy

where φ(f, y; t) is the probability that a haplotype has gone from frequency f to frequency
y in 2Net generations. Using well known results [Ewens, 2012], we obtain a differential
equation for the frequency dependent part, µn,k(t) ≡

∫ 1
0 y

k(1− y)n−kφ(f, y; t)dy,

d

dt
µn,k =

k(k − 1)

2
µn,k−1 − k(n− k)µn,k +

(n− k)(n− k − 1)

2
µn,k+1.

This is a linear system of differential equations and can be solved by matrix exponentiation.
Thus,

pn,k(t; f) =

(
n

k

)
eQtf

where Q is the matrix of coefficients of the system of differential equations and f = ((1−
f)n, f(1 − f)n−1, . . . , fn)T . This approach is similar to that used in Kamm et al. [2018]
and Jouganous et al. [2017].

1.2 Two pulse model

We can apply a similar logic to the two pulse model, and again obtain an approximate
formula. Working in a similar setting to before, we suppose that an admixture of intensity
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f1 occurred, then t1 generations more recently was followed by a second admixture of
intensity f2, which was t2 generations more ancient than the present. Then, we want to
evaluate the integral

pn,k(t1, t2; f1, f2) =

∫ 1

0

∫ 1

0

(
n

k

)
yk(1− y)n−kφ(f1, z; t1)φ(f2 + (1− f2)z, y; t2)dzdy

=

∫ 1

0

(∫ 1

0

(
n

k

)
yk(1− y)n−kφ(f2 + (1− f2)z, y; t2)dy

)
φ(f1, z; t1)dz

because we need to integrate over all possible allele frequencies at the time of the second
pulse of admixture.

The internal integral can be solved much the same way the one pulse model, however,
the initial allele frequency needs to be adjusted to f2 + (1− f2)z. Thus, we need to derive
a differential equation for

ηn,k(t) ≡
∫ 1

0
(f2 + (1− f2)z)k(1− f2 − (1− f2)z)n−kφ(f, z; t)dz.

Defining dn,k = (f2 + (1 − f2)z)k(1 − f2 − (1 − f2)z)n−k and applying the Wright-Fisher
generator to dn,k, we get

Ldn,k =
1

2
x(1− x)

d2

dx2
dn,k

=
1

2
(1− f2)2x(1− x) (k(k − 1)dn−2,k−2 − 2k(n− k)dn−2,k−1

+(n− k)(n− k − 1)dn−2,k) ,

which is actually identical to the dilution model, but with dn,k in place of cn,k.
Now, put D = k(k − 1)dn−2,k−2 − 2k(n − k)dn−2,k−1 + (n − k)(n − k − 1)dn−2,k, and

write

(1− f2)2x(1− x)D = (f2 + (1− f2)x− f)(1− f2 − (1− f2)x)D

= (f2 + (1− f2)x)(1− f2 − (1− f2)x)D − f2(1− f2 − (1− f2)x)D.

Now, the first term looks like

k(k − 1)dn,k−1 − 2k(n− k)dn,k + (n− k)(n− k − 1)dn,k+1,

which is the same as the one pulse model. However, the second term will be

k(k − 1)dn−1,k−2 − 2k(n− k)dn−1,k−1 + (n− k)(n− k − 1)dn−1,k.
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Note that the second term is not the same as the first term with n 7→ n− 1. However, we
will apply the approximation, that dn,k ≈ dn−1,k for large n, Thus, we have

d

dt
ηn,k =

k(k − 1)

2
ηn,k−1 − k(n− k)ηn,k +

(n− k)(n− k − 1)

2
ηn,k+1

− f
(
k(k − 1)

2
ηn,k−2 − k(n− k)ηn,k−1 +

(n− k)(n− k − 1)

2
ηn,k

)
.

The first line is simply the same differential equation as the one pulse case, while the
second line is shifted down one term. Defining the matrix corresponding to that differential
equation as Qm, we see that

pn,k(t1, t2; f1, f2) ≈
(
n

k

)
eQt2e(Q−fQm)t1ft

where ft = ((1− f2 − (1− f2)f1)n, (f2 + (1− f2)f1)(1− f2 − (1− f2)f1)n−1, . . . , (f2 + (1−
f2)f1)

n)T .

1.3 Dilution model

Under this model, an admixture of intensity f1 occurs, then t1 more generations more
recently, an unadmixed group contributes to the population at hand with intensity f2 t2
generations in the past. Again, we can write down an integral to solve,

pn,k(t1, t2; f1, f2) =

∫ 1

0

∫ 1

0

(
n

k

)
yk(1− y)n−kφ(f1, z; t1)φ((1− f2)z, y; t2)dzdy

=

∫ 1

0

(∫ 1

0

(
n

k

)
yk(1− y)n−kφ((1− f2)z, y; t2)dy

)
φ(f1, z; t1)dz

The internal integral is simple: it’s the same as the one admixture pulse model, except
that the initial allele frequency is (1 − f2)z. Evidently, the result that integral will be a
function of terms cn,k = ((1− f2)z)k(1− (1− f2)z)n−k, so we need to solve integrals of the
form

νn,k =

∫ 1

0
((1− f2)z)k(1− (1− f2)z)n−kφ(f1, z; t1)dz.

Applying the generator of the Wright-Fisher diffusion to the function cn,k we see that

Lcn,k =
1

2
x(1− x)

d2

dx2
cn,k

=
1

2
(1− f)2x(1− x) ((k(k − 1)cn−2,k−2 − 2k(n− k)cn−2,k−1

+(n− k)(n− k − 1)cn−2,k) .
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Let C = k(k− 1)cn−2,k−2− 2k(n−k)cn−2,k−1 + (n−k)(n−k− 1)cn−2,k, then note that

(1− f)2x(1− x)C = ((1− f)x)(1− (1− f)x− f)C

= ((1− f)x)(1− (1− f)x)C − f((1− f)x)C.

Multiplying through, we see that the first term looks like

k(k − 1)cn,k−1 − 2k(n− k)cn,k + (n− k)(n− k − 1)cn,k+1,

while the second term will be

k(k − 1)cn−1,k−1 − 2k(n− k)cn−1,k + (n− k)(n− k − 1)cn−1,k+1,

i.e. it is the same except with n 7→ n− 1. Making an approximation that cn,k ≈ cn−1,k for
large n, we can pull out a factor of (1− f2) and obtain a system of differential equations,

d

dt
νn,k ≈ (1− f2)

(
k(k − 1)

2
νn,k−1 − k(n− k)νn,k +

(n− k)(n− k − 1)

2
νn,k+1

)
.

Noting that this is essentially the same differential equation as the one pulse model, we
have that

pn,k(t1, t2; f1, f2) ≈
(
n

k

)
eQt2e(1−f2)Qt1fd

=

(
n

k

)
eQ((1−f2)t1+t2)fd

where now fd = ((1− (1− f2)f1)n, ((1− f2)f1)(1− (1− f2)f1)n−1, . . . , ((1− f2)f1)n)T .
Note that this surprisingly simple form suggests that a dilution can be understood as

an admixture of intensity (1− f2)f1 occurring (1− f2)t1 + t2 generations ago.

2 Error model

To incorporate false negative and false positive calls into our model, assume that there
are independent false negative and false positive calls with rates ε+ and ε−, respectively.
Specifically, every individual that has a fragment is called negative independently with
probability ε− and every individual that doesn’t is called positive with probability ε+.
Define b(k;N, p) to the probability mass function of a binomial random variable with size
N and probability p. Also define f(k;N1, N2, p1, p2) to be the distribution of the difference
of two binomial random variables. Then we have that

f(k;N1, N2, p1, p2) =

N2∑
i=0

b(k + i;N1, p1)b(i;N2, p2)
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by a simple argument. Thus, we have that the probability of observing a fragment at
frequency k is

p̃n,k =
n∑

i=0

f(k − i;n− i, i, ε+, ε−)pn,i

because if we have i introgressed fragments, we independently take false positives out of the
n− i non-introgressed fragments and false negatives out of the i introgressed fragments. If
the number of false positives minus false negatives is d, then we have i+ d total fragments
after errors, and thus need d = k − i to end up with exactly k fragments. We then sum
over all i.

To quantify the impact of errors in calling fragments, we generated an expected FFS
under a 1 pulse model with f = 0.02 and t = 0.1 diffusion time units. We then computed
the Kullback-Leibler divergence between the true FFS and the an FFS with a given false
positive and false negative rate. Supplementary Figure 5 shows that, for low amounts of
admixture as we simulated here, the impact of false positives is much larger than that
of false negatives, due largely to the fact that most of the genome is a true negative.
Nonetheless, even with relatively high false negative and false positive rates, such as ε− =
0.1 and ε+ = 0.01, the Kullback-Leibler divergence is only ∼ 0.005, indicating that false
positives and false negatives do not have a substantial effect on the FFS.

3 Results from maximum likelihood fitting

Supplementary Table 1 and 2 shows the parameter estimates from maximum likelihood
fitting of the Asian and European data, respectively, across a variety of cutoffs from the
Steinrücken data.

4 Admixture constraints

Given European and East Asian mixture proportions, fEUR and fASN, respectively, we
constrain mixture proportions by constraining

a =
fASN + fEUR

2

and
d = fASN − fEUR

we then express fASN and fEUR in terms of the model parameters, and solve for model
parameters that will adhere to the constraints.

In the one pulse model, f1 is a single pulse of Neandertal introgression into the ancestral
Eurasian population. So,

fASN = f1
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and
fEUR = f1.

Thus, we see that
f1 = a

In the two pulse model, f1 is a first pulse of Neandertal introgression into the ances-
tral Eurasian population, and f2 is a second pulse of introgression into the East Asian
population. This results in

fASN = f2 + (1− f2)f1
and

fEUR = f1,

which yields
f1 = a− d/2

and

f2 =
d

1 + d/2− a
.

For the three pulse model, f1 is a first pulse of Neandertal introgression into the an-
cestral Eurasian population, f2 is a second pulse of introgression into the East Asian
population, and f3 is a second pulse of introgression into the European population. Thus,

fASN = f2 + (1− f2)f1

and
fEUR = f3 + (1− f3)f1,

Note that in this model, we have more free parameters than constraints, so we sample f1
from a uniform distribution between 0 and a− d/2, and then solve to obtain

f2 =
a+ d/2− f1

1− f1

and

f3 =
−a+ d/2 + f1

f1 − 1
.

For the dilution model, f1 is a single pulse of Neandertal introgression into the ancestral
Eurasian population, and f4 represents the dilution from the Basal Eurasian population
into the European population. This yields admixture proportions

fASN = f1

and
fEUR = (1− f4)f1,
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resulting in
f1 = a+ d/2

and

f4 =
d

a+ d/2

In the model with 3 pulses of Neandertal admixture and dilution, f1 is a first pulse
of Neandertal introgression into the ancestral Eurasian population, f2 is a second pulse
of introgression into the East Asian population, and f3 is a second pulse of introgression
into the European population, while f4 represents the dilution from the Basal Eurasian
population into the European population. Further, we always assume that dilution is more
recent than the second pulse in Europe. In this case, admixture proportions are

fASN = f2 + (1− f2)f1

and
fEUR = (f3 + (1− f3)f1)(1− f4)

Again, we have more free parameters than constraints so we first draw f1 from a uniform
distribution between 0 and a− d/2 and f4 from a uniform distribution between 0 and 0.5.
Then, we set

f2 =
a+ d/2− f1

1− f1
and

f3 =
a− d/2 + f1(1− f4)

(1− f1)(1− f4)

5 Neural Network Weights

In order to quantify the impact of different frequency spectrum categories to the inferences
of the FCNN, we computed the matrix product of the weights across the fully connected
layers. Note that we flatten our input FFS matrix to a single vector of length m1 =
64× 64 = 4096 initially. Then, we compute the weighted sum of the weights leading to the
nodes in the subsequent layers of the FCNN. Specifically, if layer i has mi nodes, and wi

is the mi ×mi+1 matrix where wi,j,k provides the weights from node j in layer i to node k
in layer i+ 1, then we compute the matrix product

M = wiwi+1 · · ·wn

when we have n layers.
The resulting matrix M will be 4096 × 5, with each of the 5 columns corresponding

to one of the different models. Thus, we map each of the columns back into the original
64× 64 matrix, resulting in the panels shown in Supplementary Figure 6.
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6 Robustness of FCNN results

The Neandertal fragment calls from Steinrücken et al. [2018] are based on the posterior
probability of introgression at each position estimated using diCal-admix. Because each
position has a different probability of introgression, defining a global cut-off is necessary
to obtain a consensus across the genome, such that a higher cut-off results in a higher
certainty of the calls (i.e. higher precision), but more false negatives (i.e. lower recall).
For the analysis presented in the main text, we used a cut-off of 0.45, recommended in
Steinrücken et al. [2018] as it provides the best balance across performance metrics based
on their precision-recall curves. However, to test the robustness of the selected cut-off, we
generated FFS based on a range of cut-offs and analyzed them using the fully-connected
neural network. Supplementary Figure 4 shows that our results are consistent across the
entire range of cutoffs.

In addition, we had access to the introgressed fragments calls from Sankararaman et al.
[2014], which were ascertained independently using a conditional random field method.
We converted these fragment calls into introgressed site calls by looking at the same posi-
tions along 100kb windows used previously, and counting how many individuals presented
an introgressed fragment which overlapped with that site. We used these SNP calls as
independent confirmation of all results (Figure 7).
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Figure 1: Representation of the five different demographic models simulated in MSprime.
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Figure 2: Training and Validation accuracy of FCNN as it trained over 150 epochs. The x
axis indicates the training epoch (i.e. one pass through the whole dataset) while the y-axis
shows the accuracy on either training data (blue) or validation data (green).
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Figure 3: a) Confusion matrix of simulated data categorized by the FCNN. b) Confu-
sion matrix of simulated data categorized by the FCNN when accepting results with a
probability cut-off of 0.8.
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Figure 4: Posterior probability of the empirical introgression data from the FCNN classifier
under different cut-offs of the posterior probability of introgression in the Steinrücken et al.
[2018] data. The x axis indicates the posterior probability cutoff, and the y axis the model
probability according to the FCNN. Each line corresponds to a different model.
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Figure 5: The impact of false positive and false negative fragment calls on the FFS. The
x axis shows the false positive rate, and the y axis the Kullback-Liebler divergence of
the observed FFS to the true FFS (larger values indicate more difference). Each line
corresponds to a different false negative rate.
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Figure 6: Weights projected across layers into the final dense layer, representing the relative
importance of each position along the FFS matrix when classifying a FFS into one of the
five final categories.
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Figure 7: Posterior probability of the empirical introgression data from Sankararaman et
al., 2014 matching each of the five demographic models, determined by the FCNN classifier.
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