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Machine learning model building 4 

Training data. We simulated nucleotide alignments using independent branch rate (IBR) 5 

and correlated branch rate (CBR) models using the NELSI package1. In IBR, branch-6 

specific rates were drawn from a lognormal distribution with a mean gene rate and a 7 

standard deviation (in log-scale) that varied from 0.1 to 0.4, previously used in a study 8 

simulating independent rates with different levels of variation1. In CBR, branch-specific 9 

rates were simulated under an autocorrelated process2 with an initial rate set as the mean 10 

rate derived from an empirical gene and an autocorrelated parameter, ν, that was 11 

randomly chosen from 0.01 to 0.3, previously used in a study simulating low, moderate 12 

and high degrees of autocorrelated rates1. We used SeqGen3 to generate alignments 13 

under Hasegawa-Kishino-Yano (HKY) model4 with 4 discrete gamma categories by using 14 

a master phylogeny, consisting of 60-400 ingroup taxa randomly sampled from the bony-15 

vertebrate clade in the Timetree of Life5. Mean evolutionary rates, G+C contents, 16 

transition/transversion ratios and numbers of sites for simulation were derived from 17 

empirical distributions6. These 2,000 simulated datasets were used as training data in 18 

building the machine learning model.  19 

Features acquisition. Lineage-specific rate estimates (ri’s) were obtained using 20 

equations [28] - [31] and [34] - [39] in Tamura et al. (2018)7. As mentioned in the main 21 

text, a lineage rate is a function of all the branch rates that belong to that lineage. For any 22 

given node in the phylogeny, we extracted the relative rates of its ancestral clade (ra) and 23 

two direct descendant clades (r1 and r2). Then, we calculated correlation between 24 

ancestral lineage and its direct descendant lineage rate to obtain estimates of ancestor-25 

descendant rate correlation (ρad). We also calculated correlation between sister lineage 26 

rates (ρs), for which the lineage rates of sister pairs are randomly labeled. The labeling of 27 

sister pairs have small impact on ρs when the number of sequences in the phylogeny is 28 

not too small (>50). However, one can also choose to resample sister pairs for multiple 29 



times and use the mean of resampled ρs in the CorrTest in order to eliminate any bias 30 

that may result from the arbitrary designation of sister rates during the correlation process, 31 

which can be a problem when the number of taxa is small. To avoid the assumption of 32 

linear correlation between lineages, we used Spearman rank correlation because it can 33 

capture both linear and non-linear correlation between two vectors. Two additional 34 

features derived from the relative rates in the phylogeny were used in building the 35 

machine learning model. We first estimated ρad_skip1 as the correlation between rates 36 

where the ancestor and descendant were separated by one intervening branch, and 37 

ρad_skip2 as the correlation between rates where the ancestor and descendant were 38 

separated by two intervening branches. This skipping reduces ancestor-descendant 39 

correlation, which we then used to derive the decay of correlation values by using 40 

equations (ρad - ρad_skip1)/ρad and (ρad - ρad_skip2)/ρad. These two features improved the 41 

accuracy of our model slightly. In the analyses of empirical datasets, we found that a large 42 

amount of missing data (>50%) can result in unreliable estimates of branch lengths and 43 

other phylogenetic errors8–12. In this case, we recommend computing selected features 44 

using only those lineage pairs for which >50% of the positions contain valid data, or 45 

remove sequences with a large amount of missing data. 46 

Predictive model. We trained a logistic regression model using the skit-learn module13, 47 

which is a python toolbox for data mining and data analysis using machine learning 48 

algorithms, with only ρad, only ρs or all 4 features (ρs, ρad, the two decay of correlation 49 

features) using 2,000 simulated training datasets (1,000 with CBR model and 1,000 with 50 

IBR model). A response value of 1 was given to true positive cases (correlated rates) and 51 

0 was assigned to true negative cases (independent rates). Thus, the prediction scores 52 

(CorrScore) were between 0 and 1. A high score representing a higher probability that 53 

the rates are correlated. Then the global thresholds at 5% and 1% significant levels can 54 

be determined. To explore the reliability of the global threshold, we re-trained the model 55 

with all 4 features extracted from 4 subsets of training data with ≤ 100 (M100), 100 – 200 56 

(M200), 200 – 300 (M300), and > 300 (M400) sequences. A specific threshold was 57 

determined for each training subset and then was tested using Tamura et al. (2012)’s 58 

data14 with the corresponding size. For example, we used the threshold determined by 59 

the model trained with small data (≤ 100 sequences) on the test data that contain less 60 



than 100 sequences, and used the threshold determined by the model trained with large 61 

data (>300 sequences) on the large test data (400 sequences). We found that the 62 

accuracy of using the specific thresholds (Fig. S1a-c) is similar to the accuracy when we 63 

used a global threshold (Fig. 3d-f). This is because the machine learning algorithm has 64 

automatically incorporated the impact of the number of sequences when it determined 65 

the relationship of four selected features (ρad, ρs, and 2 decays).  66 

Cross-validation 67 

We performed two cross-validation tests. In 10-fold cross-validation, the predictive model 68 

was developed using 90% of the synthetic datasets, and then its performance was tested 69 

on the remaining 10% of the datasets. The AUROC was greater than 0.99 and the 70 

accuracy was high (>94%). Even in the 2-fold cross-validation, where only half of the 71 

datasets were used for training the model and the remaining half were used for testing, 72 

the AUROC was still greater than 0.99 with an accuracy greater than 92%. This indicates 73 

that the features we used in building the machine learning model are powerful and 74 

ensures high accuracy even when the training data are limited.  75 

External tests  76 

Publicly available data. Two previously published simulated dataset were used to 77 

evaluate CorrTest’s performance. Beaulieu et al.’s data15 contains 91 ingroup taxa with 78 

1,000 base pairs each. For Tamura et al.’s data14, we present the test results for the data 79 

simulated using CBR model (autocorrelated lognormal distribution) and IBR model 80 

(independent uniform distribution with 50% rate variation) here. We tested the 81 

performance of our model on CBR and IBR data with different GC contents, 82 

transition/transversion ratios, and evolutionary rates. We randomly sampled 50, 100, 200, 83 

and 300 sequences from the original 400 sequences and conducted CorrTest using the 84 

correct, error-prone topology inferred by the Neighbor-joining method16 with an 85 

oversimplified substitution model17. We also tested CorrTest’s performance on data 86 

simulated under an IBR model process with 100% rate variation and found that CorrTest 87 

works perfectly (100% accuracy; results not shown). 88 

Synthetic data. We conducted another set of simulations using IBR (independent 89 

lognormal distribution) and CBR (autocorrelated lognormal distribution)2 model with 100 90 



replicates each using the same strategy as a training data simulation (described above) 91 

on a master phylogeny of 100 taxa randomly sampled from the bony-vertebrate clade in 92 

the Timetree of Life5. These 200 datasets were used to conduct CorrTest and Bayes 93 

factor analyses and to obtain the autocorrelation parameter (v) in MCMCTree18. 94 

 95 
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Figure S1. Patterns of CorrTest accuracy using M100, M200, M300, and M400 models 163 

for the corresponding test datasets14. Accuracies are shown for increasing number of 164 

sequences. The accuracy of CorrTest for different sequence length is shown when (a) 165 

the correct topology was assumed and (b) the topology was inferred. (c) The accuracy of 166 

CorrTest for datasets in which the inferred the topology contained small and large number 167 

of topological errors.  168 

 169 

 170 


