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Supplementary Methods 

Genetics and imputation 

A total of 2 067 subjects had quality controlled genotype data. Genotypes were obtained on either the Illumina 

Human OmniExpress (n=381) or Affymetrix beadchip 6.0 (n=1 686) platform, and each group was pre-processed 

separately. Raw genotype data were cleaned and formatted using the Haplotype Reference Consortium (HRC) 

Imputation Preparation and Checking Tool (v4.2.6, http://www.well.ox.ac.uk/~wrayner/tools), then imputed using 

the Michigan Imputation Server (MIS)1 and Eagle22 phasing software against the HRC reference panel (v1.1).3 

Following imputation, tri-allelic variants were removed and both groups of subjects were merged (subsequent 

genetic analyses co-varied for genotype platform). Output VCF format files from MIS were converted to PLINK 

dosage format using DosageConvertor (v1.0.3, http://genome.sph.umich.edu/wiki/DosageConvertor). 

For the IMAS PET imaging sample, genotyping was performed using the Illumina HumanOmni-Express BeadChip. 

Standard quality control procedures were conducted as described previously.4 The TSPO rs6971 genotype was 

imputed using IMPUTE (v2.2) and the 1000 Genomes (phase 1) reference panel. A posterior probability of 0.90 was 

used as a quality threshold for imputed genotypes. APOE (rs429358, rs7412) genotyping was carried out separately 

using standard protocols. 

 

Selected reaction monitoring (SRM) proteomics 

The panel of proteins was preselected from existing literature for their roles in neurodegenerative disease, microglial 

function, and inflammatory pathways. Samples were prepared for LC-SRM analysis using standard protocol. 

Briefly, on average ~20 mg of brain tissue from each subject was homogenized in denaturation buffer (8M urea, 50 

mM Tris-HCl pH 7.5, 10 mM DTT, 1 mM EDTA). Followed denaturation, 400 μg protein aliquots were taken for 

further alkylation with iodoacetamide and digestion with trypsin. The digests were cleaned using solid phase 

extraction, followed readjustment of tryptic peptide digests concentration to 1 μg/μL. 30 μL aliquots were mixed 

with 30 μL synthetic peptide mix. All liquid handling steps were performed in 96 well plate format using Epmotion 

5075 TMX (Eppendorf) and Liquidator96 (Rainin).  

All LC-SRM experiments were performed on a nano ACQUITY UPLC coupled to TSQ Vantage MS instrument, 

with 2 µL of sample injection for each measurement. A 0.1% FA in water and 0.1% in 90% ACN were used as 

buffer A and B, respectively. Peptide separations were performed by an ACQUITY UPLC BEH 1.7 µm C18 column 

(75 µm i.d. × 25 cm) at a flow rate 350 nL/min using gradient of 0.5% of buffer B in 0-14.5 min, 0.5-15% B in 14.5-

15.0 min, 15-40% B in 15-30 min and 45-90% B in 30-32 min. The heated capillary temperature and spray voltage 

was set at 350 °C and 2.4 kV, respectively. Both the Q1 and Q3 were set as 0.7 FWHM. The scan width of 0.002 

m/z and a dwell time of 10 ms were used.  

All the SRM data were analyzed by Skyline software.5 All the data were manually inspected to ensure correct peak 

assignment and peak boundaries. The peak area ratios of endogenous light peptides and their heavy isotope-labeled 

internal standards (i.e., L/H peak area ratios) were then automatically calculated by the Skyline software and the best 

transition without matrix interference was used for accurate quantification. The peptide relative abundances were 

log2 transformed and centered at the median.  

 

Postmortem Neuropathology and microglial density quantification 

All brains were examined by a board-certified neuropathologist blinded to clinical data. Brains were removed in a 

standard fashion as previously described.6 After weighing, each brain was cut into 1cm coronal slabs using a 

Plexiglas jig. Slabs from one hemisphere, and slabs from the other hemisphere not designated for rapid freezing, 

were fixed for at least 3 days in 4% paraformaldehyde. We used defined landmarks to obtain at least 2 tissue blocks 

from each of the following regions: dorsolateral prefrontal cortex, middle and inferior temporal cortex, inferior 

parietal, hippocampus CA1/subiculum, entorhinal cortex proper, ventromedial caudate, and posterior putamen. 

http://www.well.ox.ac.uk/~wrayner/tools
http://genome.sph.umich.edu/wiki/DosageConvertor
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Tissue blocks were processed, embedded in paraffin, cut into either 6 micron or 20μm sections, and mounted on 

glass slides. Neuropathologic diagnoses were made by a board-certified neuropathologist blinded to age and clinical 

data. Bielschowsky silver stain 6 micron sections were used to visualize neuritic plaques, diffuse plaques, and 

neurofibrillary tangles in the frontal, temporal, parietal, entorhinal, and hippocampal cortices, as previously 

described,7 for the pathologic diagnosis of AD. A neuropathologic diagnosis of “no AD,” “low likelihood AD,” 

“intermediate likelihood AD,” or “high likelihood AD” was given based on semiquantitative estimates of neuritic 

plaque density as recommended by CERAD and the neurofibrillary tangle stage by Braak and Braak as 

recommended by the National Institute on Aging (NIA) - Reagan criteria. For analyses, the neuropathologic 

diagnosis of AD was considered absent if NIA-Reagan diagnosis was no or low and present if intermediate or high 

likelihood. The density of neuritic plaques, diffuse plaques and neurofibrillary tangles was characterized using 

Bielschowsky silver stain for visualization and a graticule to count total number of each in a 1-mm2 area (100 

magnification) of highest density. Counts for each marker were completed for each of five regions (midfrontal 

cortex, middle temporal cortex, inferior parietal cortex, entorhinal cortex, and hippocampus CA1/subiculum) and 

then converted to standardized scores. 

Thirteen additional pathologies were measured in our cohort: Lewy bodies, macroscopic infarcts (acute, sub-acute, 

and chronic measured separately), microscopic infarcts (acute, sub-acute, and chronic measured separately), 

atherosclerosis, arteriolosclerosis, cerebral amyloid angiopathy (CAA), hippocampal sclerosis, neuronal loss in the 

substantia nigra,8 and transactive response DNA-binding protein 43 kDa (TDP-43) proteinopathy. CAA was graded 

on a five-level scale (0 to 4) in four neocortical regions (mid-frontal, angular gyrus, inferior temporal gyrus, and 

calcarine cortex) and averaged to derive a CAA score, as previously described.9 Chronic macroscopic and 

microscopic infarcts were each dichotomized as present or absent. Atherosclerosis was scored on a four-level 

severity scale, and arteriolosclerosis was measured on a four-level scale by small vessel pathologies in anterior basal 

ganglia.10 Nigral, limbic, and neocortical Lewy bodies were dichotomized as present or absent, as identified using 

immunohistochemistry. Hippocampal sclerosis was recorded as either present or absent as evaluated with H&E 

stain. Pathological diagnosis of AD was given for cases with high or intermediate likelihood of AD per the modified 

National Institute of Aging–Reagan Institute criteria.6 For a subset of participants (n = 826), transactive response 

DNA-binding protein 43 kDa (TDP-43) proteinopathy was measured and categorized into four steps of severity as 

previously described:11 no inclusions (stage 0), inclusions in amygdala only (stage I), inclusions in amygdala as well 

as entorhinal cortex and/or hippocampus CA1 (stage II), and inclusions in amygdala, neocortex, and entorhinal 

cortex and/or hippocampus CA1 (stage III). In addition, a semi-quantitative six-point scale for the severity of the 

TDP-43 cytoplasmic inclusions was rated as previously described (n = 812).12 

Immunohistochemistry for microglia was performed using an Automated Leica Bond immunostainer (Leica 

Microsystems Inc., Bannockborn IL) and anti-human HLA-DP, DQ, DR antibodies (clone CR3/43; 

DakoCytomation, Carpinteria CA; 1:100) using standard Bond epitope retrieval and detection. An investigator 

blinded to the clinical and pathologic data, outlined the cortical or subcortical gray region of interest on each slide 

using a Microbrightfield Stereology System. The Stereo Investigator 8.0 software program was used to place a 1000 

× 750 μm sampling grid over the region and the program was engaged to sample 4.0% of the region with a 200 × 

150 μm counting frame at 400x magnification at interval grid intersection points. Using separate tags for stage I, II 

and III microglia, the operator marked the microglia at each intersection point. These counts were then upweighted 

by the stereology software to estimate total number of microglia (stage I, II, and III) in the defined area. Different 

stages of activation from least (stage I) to most (stage III) activated can be defined morphologically; when these 

cells become activated, their long fine processes contract and thicken and the cell body adopts a larger more rounded 

cellular conformation. Data from the two adjacent blocks of tissue (0.5 to 1.0 cm apart) were averaged to obtain 

composite average densities of microglia in each region. For CD33 staining, an anti-human CD33 monoclonal 

antibody (clone PWS44; Leica Biosystems, Germany) was used with diaminobenzidene (DAB) as chromagen. The 

amyloid deposits were stained with the 10D5 antibody (courtesy of Elan pharmaceuticals) using alkaline 

phosphatase as the chromagen. 

 

Longitudinal cognitive decline metric 
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All subjects were administered 17 cognitive tests annually spanning five cognitive domains. Rates of cognitive 

decline for each domain were calculated per subject using general linear mixed models of cognitive scores over 

time, co-varying for age at baseline, years of education, and sex, as described.13 

 

[11C]-PBR28 PET image acquisition and analysis 

An anatomic 3D magnetization-prepared rapid-acquisition gradient-echo (MP-RAGE) MR imaging sequence was 

acquired on a 3T Tim Trio (Siemens). [11C]-PBR28 was synthesized as described previously.14 Dynamic PET scans 

(HR+; Siemens) were initiated with injection of approximately 555MBq of [11C]-PBR28 (details previously 

published).14 Data were acquired for 90 min, with static images generated from data between the 35-90 min interval. 

PET imaging data were motion-corrected and normalized to Montreal Neurological Institute (MNI) coordinates 

using previously described methods.15 Standardized uptake value (SUV) images were created by normalizing each 

voxel by the injected dose of [11C]-PBR28 per total body weight. Statistical models of the effect of rs2997325 

genotype included TSPO rs6971 (technical covariate to control for altered TSPO binding characteristics14), APOE ε4 

status, age at study entry, and sex as co-variates. 

 

PAM metric validation using logistic regression 

The ‘rms’ R package was used to perform logistic regression model performance and validation. The main challenge 

presented by these data was the zero-inflated, non-normal distribution of stage III microglial densities found across 

regions (Figure 1). This in turn resulted in a zero-inflation of the PAM measures, as stage III density is found in the 

numerator of the PAM equation. Therefore, the effect of a PAM term evaluated continuously within a logistic model 

of pathological Alzheimer’s disease (pathoAD) status may only be representing an underlying binary effect, 

whereby the difference in probability of having pathoAD is driven by individuals with none vs. some stage III 

microglia. To test this, we calculated four versions of each cortical PAM score (as the subcortical stage III microglia 

showed no association with pathoAD): 1) ‘continuous’: the full range of PAM as a numerical variable, 2) ‘med. 

split’: the continuous measure binarized by coding all values less than the median as 0 and all those equal or greater 

than the median as 1, 3) ‘zero vs. else’: the continuous measure binarized by coding all values of 0 as 0, and 

anything larger than zero as 1, and 4) ‘no zeros’: the continuous measure but only taking a subset of subjects in the 

dataset by excluding all subjects with a value of 0. These transformations are represented graphically on the 

midfrontal PAM measure in Supplementary Figure 2a.  

For each of these transformations, we tested a series of models with different covariates and evaluated area under the 

receiver operating characteristics curve (AUC) as our metric of model performance. The results of all tested models 

are found in Supplementary Table 1. In addition to testing for improvements in model performance, we examined 

diagnostic plots of influence and leverage, as well as residual distributions, to confirm that regression assumptions 

were not violated. A bootstrapping method known as 0.632+, which accounts for the probability of resampling, was 

used for further assessment of model validity and generalizability (1 000 iterations). Bootstrapping allows for the 

calculation of model optimism (overfitting) and thus provides estimates of calibrated AUCs. 

Following this comprehensive validation procedure, we found that the continuous measure of PAM (transformation 

1) outperformed the other three transformations both before and after bootstrapping, particularly for PAM measured 

in the inferior temporal cortex (Supplementary Figure 2b). The ‘med. split’ transformation performed similarly to 

the ‘continuous’ measure for PAM in the midfrontal cortex, but still with less accuracy. Also, while the inclusion of 

the ‘zero vs. else’ PAM term did improve model accuracy over the APOE + covariates only model, these models 

performed substantially worse than the ‘med. split’ and ‘continuous’ measures in both inferior temporal and 

midfrontal cortex, suggesting that the effect of PAM is driven both by the presence vs. absence of stage III microglia 

and the continuous spectrum of relative activation in those with non-zero stage III counts. Note that AUC values 

differ between the ‘no zeros’ models and the others even where the PAM term is not included; this is due to the 

difference in sample size in this analysis where subjects with PAM=0 were removed. Also note minor variation in 
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the bootstrapped model AUCs where no PAM term is present; this is due to the (pseudo)random nature of the 

bootstrap procedure and is expected. 

 

Hierarchical clustering of microglial density and PAM phenotypes 

Pearson correlations were calculated between each pair of microglial phenotypes. Statistical significance was 

determined using a false discovery rate threshold of q=0.05. To order phenotypes within the correlation matrix, 

hierarchical clustering was then performed using the corrMatOrder() function in the R ‘corrplot’ package. To 

objectively determine the optimal number of clusters to impose on the data, the ‘NbClust’ package was used to 

simultaneously evaluate 25 metrics of best fit for cluster number.16 Through majority vote across metrics, three 

clusters provided an optimal solution (Supplementary Figure 1). 

 

Regression of PAM against pathological AD diagnosis and individual neuropathologies 

Regression modeling was performed using the ‘rms’ and ‘MASS’ packages in R (v3.3.3). Each PAM measure was 

first tested for effects on pathological diagnosis of AD using logistic regression in a full model, co-varying for age at 

death, sex, postmortem interval (PMI), genotype batch, top three EIGENSTRAT principal components (PCs) (to 

control for fine population stratification), and APOE ε4 status.  For iterative re-weighted least squares regression, the 

Huber psi function17 was used for coefficient estimation. The .632+ bootstrap method was chosen for model 

validation as it takes into account the probability of resampling observations and thus outperforms traditional cross-

validation and bootstrapping algorithms.18 

 

Causal mediation modeling 

We assumed a priori the canonical cascade of AD etiopathology where the influence of beta-amyloid on cognitive 

decline lies upstream of tau hyperphosphorylation (measured as paired helical filament (PHF) tau); this model has 

been shown to be statistically valid in the ROS/MAP cohort using mediation modeling.19 Based on this assumption, 

we tested only models where amyloid effects are upstream of tau, but alternated the role of PAM between effector 

and mediator to ascertain its likely position within the pathological cascade. To estimate confidence intervals for 

average indirect, direct, and total effects, 1 000 Monte Carlo draws were used for nonparametric bootstrapping.  

 

Genome-wide association analysis 

Only high quality variants (imputed info score > 0.8) were included in analyses. All models co-varied for age at 

death, postmortem interval, sex, genotype batch, and the first three EIGENSTRAT20 principal components. 

Significance thresholds of p<2.5x10-8 and p<1.0x10-5 were deemed genome-wide significant (corrected for two 

GWAS) and suggestive, respectfully. To contrast results from our GWAS, overlap was evaluated using the ‘Q-

value’ Bioconductor package (https://github.com/StoreyLab/qvalue),21 where true positive rate is estimated and 

overlapping proportions of SNPs between GWAS are tested.  

For post-processing of each set of GWAS results, we used the recently released Functional Mapping and Annotation 

of Genome-Wide Association Studies (FUMAGWAS; http://fuma.ctglab.nl/) platform.22 This platform performs a 

series of state-of-the art SNP- and gene-level functional mapping steps to distill and explore the biological relevance 

of GWAS findings based on the most recent bioinformatics database updates. As of Feb 21, 2018 (after which our 

results were processed) these databases include the latest eQTL data releases from the Genotype-Tissue Expression 

project (GTEx version 7; https://www.gtexportal.org/home/),23 the Multiple Tissue Human Expression Resource 

(MuTHER; http://www.muther.ac.uk/Data.html), the Brain eQTL Almanac from the UK Brain Expression 

Consortium (BRAINEAC; http://www.braineac.org/),24 the CommonMind Consortium 

https://github.com/StoreyLab/qvalue
http://www.muther.ac.uk/Data.html
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(https://www.synapse.org/cmc),25 and the ROS/MAP xQTL server (http://mostafavilab.stat.ubc.ca/xQTLServe/).26 

SNP2GENE mapping was performed using the following parameters: lead SNPs defined at p<1x10-5, clumping 

minimum r2 for LD in risk loci of 0.6 with accompanying association p < 0.05, inclusion of all 1000 Genomes Phase 

327 reference SNPs in LD calculations, 250kb window for merging risk loci, and maximum distance for physical 

gene mapping of 10kb. Gene mapping using eQTL data incorporated all tissue type data from all aforementioned 

databases. All other parameters were chosen as default. Additionally, independent SNP signals within each 

identified risk locus were assessed for Combined Annotation Dependent Depletion (CADD v1.3) score,28 

RegulomeDB (v1.1; http://www.regulomedb.org/) score,29 and occurrence in the Catalog of published GWAS 

(https://www.ebi.ac.uk/gwas/).30 Genes mapped to risk loci based on combined criteria were carried forward for 

GENE2FUNC analysis, also implemented using the FUMAGWAS platform. 

Tissue expression specificity for each mapped gene was evaluated using GTEx v7 across 53 tissue types and 

displayed as average expression per label (log2 transformed). Tissue-specific enrichment of the set of mapped genes 

for each GWAS was evaluated using hypergeometric tests based on pre-computed differentially expressed gene 

(DEG) t-tests, where Bonferroni p-values of p < 0.05 or absolute log fold change ≥ 0.58 constituted significant 

differential expression. Gene set enrichment analysis was performed using Molecular Signatures Database31 

(MSigDB v5.2) collections, WikiPathways32 (curated version 20161010), and the GWAS catalog (reported genes, 

version e91; 20180206) (number of unique background genes=34 748). Finally, the DrugBank database33 (version 

5.0.11; https://www.drugbank.ca/) was used to identify drugs targeting mapped genes for potential therapeutic 

translation.  

 

Mendelian randomization using summary statistics 

For each cortical PAM GWAS, summary statistics were used to generate a set of scores (one score per subject, per 

GWAS), which comprise linear combinations of PAM-associated alleles weighted by their effect coefficients. The 

PRSice pipeline performs SNP clumping based on the original ROS/MAP imputed genetic data to eliminate score 

bias due to linkage disequilibrium. Gene variants and weights can then be applied to external GWAS summary 

statistic datasets to calculate estimated effect coefficients for the group of PAM-associated variants on each external 

GWAS trait for a range of 10 000 p-value thresholds (lower limit p = 0, upper limit p = 0.5, increment = 5.0x10-5). 

This method was repeated in the reverse direction (i.e. calculating scores from the published GWAS and estimating 

effect coefficients for the score on each PAM trait) to assess causal relationships of our selected traits on microglial 

activation in the aging brain. 

 

Supplementary Results 

Association of PAM with region-specific measures of neuropathology 

To test whether associations were missed due to a lack of regional specificity in pathological measures, we 

performed post-hoc analyses of all PAM measures against detailed regional pathology data (totaling 95 regional 

measures of amyloid, tau, Lewy body, and infarct pathology in both cortical and subcortical regions). These 

analyses mirrored the brain-wide results, finding exclusively amyloid- and tau-related associations with cortical 

PAM measures; there were no significant associations for either subcortical PAM measure with any regional 

phenotypic measure (Supplementary Figure 3).  

 

Genes with known drug targets in DrugBank 

Out of all 78 genes mapped across both GWAS, eight (HT2RB, RXRG, CDA, CTH, NMNAT3, SLC16A1, SLC8A1, 

SUCLA2) are targets of one or more known drugs, small molecules, supplements, and nutraceuticals - some 

currently approved for human use. See Supplementary Table 8 for the complete list of compounds known to target 

proteins encoded by these PAM GWAS-implicated genes.  

https://www.drugbank.ca/
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Supplementary Figure Legends 

 

Supplementary Figure 1. Spearman correlation matrix of all microglial phenotypes across four brain regions, including 

proportion of active microglia (PAM). Statistical significance was determined using a false discovery rate threshold of q=0.05 

(the X symbols mark correlations that were not statistically significant). Phenotypes were ordered by hierarchical clustering.  IT = 

inferior temporal cortex; MF = midfrontal cortex; PPUT = posterior putamen; VM = verntal medial caudate.  

Supplementary Figure 2. Results of model validation for PAM phenotype. A) distribution of PAM is shown for midfrontal 

cortex (MF). B) model performance (indicated by area uner the curve of receiver operating characteristic curves (AUC)) is shown 

for the original dataset as well as for an average of AUCs over 1 000 bootstrapped samples using the .632+ method. The model 

term indicated as “APOE” is a variable of APOE ε4 genotype status (dichotomous, as positive or negative). IT = inferior 

temporal cortex. 

Supplementary Figure 3. Results of robust regression testing for associations of PAM measures with regional neuropathologies. 

The y-axis represents –log10(p-values) for the PAM measure term in regression models, weighted by the sign of the effect 

coefficent (1 or -1). P-values are two-sided. The list includes the original 14 types of tested neuropathologies, but broekn down 

into their original component observations rather than the brain-wide aggregates presented in Figure 3. Only amyloid and tau-

related pathoogies were significantly associated with any PAM measure. For a full list of variable names and summaries, see 

https://www.radc.rush.edu/docs/var/variables.htm. 

Supplementary Figure 4. A) Effects of PAM measures on protein levels in postmortem dorsolateral prefrontal cortex (DLPFC), 

assessed using robust regression. B) Effects of cortical PAM measures (inferior temporal cortex (IT) on top, midfrontal cortex 

(MF) on bottom) on the expression levels of 47 gene modules, derived from ~13 000 expressed genes in the DLPFC. The left 

side plots are sorted from left to right by decreasing effect of MF PAM on gene module expression. The right side plots are sorted 

from left to right by decreasing effect of IT PAM on gene module expression. Both y-axes represent –log10(p-values) for the 

PAM measure term in robust regression models, weighted by the sign of the effect coefficient (1 or -1). P-values are two-sided. 

Supplementary Figure 5. Tissue enrichment analyses in 53 tissue types (GTEx v7) for gene sets mapped from cortical PAM 

GWAS. Heat maps showing average expression of each gene mapped to significant and suggestive loci in the A) inferior 

temporal cortex (IT) and C) midfrontal cortex (MF) PAM GWAS (y-axis), log2 transformed, in each tissue type (x-axis). 

Corresponding differential gene expression analyses for each tissue type according to mapped gene sets from the B) IT and D) 

MF GWAS. The top, middle, and bottom plots in panels B and D correspond to up-regulated (one-sided), down-regulated (one-

sided), and differentially-regulated (two-sided) analyses, respectively. The y-axes are –log10(p-values) and the bar colors 

represent statistical significance corrected for multiple testing (red is significant and blue is not). Tissue types (x-axis) are ordered 

from left to right by decreasing significance in differential expression (two-sided) analyses (bottom plots of panels B and D).  

https://www.radc.rush.edu/docs/var/variables.htm

