
S1 Table. Screen of chromatin regulators 

PcG & TrxG 
   

Gene Complex Genotype ∆ Index 
Pc PRC1 Pc3 7% 
Psc PRC1 Psc1 9%   

Psce24 -20% 
Sce PRC1 Sce1 18% 
Scm PRC1 ScmD1 46% 
E(z) PRC2 E(z)731 -14% 
Su(z)12 PRC2 Su(z)122 -9% 
esc PRC2 esc21 26% 
Caf1-55 PRC2, NURF Caf1-55DG25308 -19% 
escl PRC2 escld01514 -20% 
phol PhoRC phol81A 41% 
ash2 COMPASS, COMPASS-like ash21 16% 
trx COMPASS-like, TAC1 trxE2 -5% 
Utx COMPASS-like Utxf01321 16% 
nej TAC1, ASH1 nejEP1179 -29% 
ash1 ASH1 ash122 7% 
E(bx) NURF E(bx)nurf301-3 -17% 
Nurf-38 NURF Nurf-38k16102 -1% 
Mi-2 NURD Mi-24 5% 
brm SWI/SNF(BAP & PBAP) brm2 -23%   

brmRNAi VDRC37721 18% 
osa SWI/SNF(BAP) osa308 28% 
Bap170 SWI/SNF(PBAP) Bap170∆135 -19% 
Snr1 SWI/SNF(BAP & PBAP) Snr1E2 5%   

Snr1SR21 17% 
mor SWI/SNF(BAP & PBAP) mor1 11%   

mor12 13%   
morRNAi VDRC6969 42% 

Bap55 SWI/SNF(BAP & PBAP) Bap55LL05955 23% 
Bap60 SWI/SNF(BAP & PBAP) Bap60RNAi VDRC12673 12% 
Bap111 SWI/SNF(BAP & PBAP) Bap111RNAi VDRC104361 -28% 
    
PcG/trxG related proteins 

  

Gene Complex Genotype ∆ Index 
psq 

 
psqE39 15% 

Rbf 
 

Rbf14 22% 
Dsp1 

 
Dsp1EP355 25% 

grh 
 

grhIM 6% 
lolal 

 
lolalK02512 1% 

Pcl 
 

Pcl5 16% 



HDAC1 
 

HDAC1def24 20% 
Sirt1 

 
Sirt12A-7-11 23% 

vtd Cohesin vtd4 47% 
Su(z)2 

 
Su(z)21.b7 -14% 

gpp 
 

gpp03342 -14% 
mod(mdg4) 

 
mod(mdg4)L3101 19% 

su(Hw) 
 

su(Hw)e04061 25% 
lid 

 
lid10424 23% 

Asx 
 

AsxXF23 11% 
dom TIP60 complex domLL05537 -3% 
E(Pc) 

 
E(Pc)1 41% 

kis 
 

kis1 0% 
kto Mediator kto1 -11% 
skd Mediator skd2 21% 
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S1 Fig. The PBAP complex is required for regenerative growth whereas the 

BAP complex is not. 

(A) Pupariation rates of animals during normal development at 18°C. n = 79 pu-

pae (osa308/+) and 173 pupae (w1118) from 3 independent experiments. 

(B) Pupariation rates of animals after tissue damage (30°C) and regeneration 

(18°C). n = 101 pupae (osa308/+) and 155 pupae (w1118) from 3 independent ex-

periments. Because the temperature shift to 30°C in the ablation protocol in-

creases the developmental rate, the pupariation timing of regenerating animals 

(B) cannot be compared to the undamaged control animals (A).  

(C) Wild-type (w1118) regenerating wing disc at R24 with wing pouch marked by 

anti-Nubbin (green) immunostaining. DNA (blue) was detected with Topro3. 

(D) brm2/+ regenerating wing disc at R24 with wing pouch marked by anti-Nubbin 

(green) immunostaining. DNA (blue) was detected with Topro3. 

(E) Comparison of regenerating wing pouch size at 24 hours after imaginal disc 

damage in brm2/+ and wild-type (w1118) animals. n = 11 wing discs (brm2/+) and 

10 wing discs (w1118). 

(F) Wild-type (w1118) regenerating wing disc at R24 with wing pouch marked by 

anti-Nubbin (green) immunostaining. DNA (blue) was detected with Topro3. 

(G) osa308/+ regenerating wing disc at R24 with wing pouch marked by anti-Nub-

bin (green) immunostaining. DNA (blue) was detected with Topro3. 
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(H) Wild-type (w1118) regenerating wing disc at R48 with wing pouch marked by 

anti-Nubbin (green) immunostaining. DNA (blue) was detected with Topro3. 

(I) osa308/+ regenerating wing disc at R48 with wing pouch marked by anti-Nub-

bin (green) immunostaining. DNA (blue) was detected with Topro3.  

(J) Comparison of regenerating wing pouch size at 24 and 48 hours after imagi-

nal disc damage and regeneration in osa308/+ and wild-type (w1118) animals. At 

R24, n = 8 wing discs (osa308/+) and 10 wing discs (w1118). At R48, n = 6 wing 

discs (osa308/+) and 8 wing discs (w1118). 

(K) Average number of mitotic cells (marked with PH3 immunostaining) per μm2 

in the regenerating wing primordium at R24 in bap170∆135/+ and wild-type (w1118) 

animals. n = 8 wing discs (bap170∆135/+) and 10 wing discs (w1118). 

(L) Wild-type (w1118) regenerating wing disc at R24 with Nubbin (green) (L’) and 

cleaved Caspase 3 (red)(L’’) immunostaining. DNA (blue)(L’’’) was detected with 

Topro3. 

(M) brm2/+ regenerating wing disc at R24 with Nubbin (green)(M’) and cleaved 

Caspase 3 (red)(M’’) immunostaining. DNA (blue)(M’’’) was detected with Topro3. 

(N-O) Wild-type (w1118) (N) and brm2/+ (O) regenerating wing discs at R24 with 

Myc immunostaining. 

(P) Quantification of anti-Myc immunostaining fluorescence intensity in the wing 

pouch in brm2/+ and wild-type (w1118) regenerating wing discs at R24. n = 11 wing 
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discs (brm2/+) and 12 wing discs (w1118). 

(Q-R) Wild-type (w1118) (Q) and osa308/+ (R) regenerating wing discs at R24 with 

Myc immunostaining. 

(S) Quantification of anti-Myc immunostaining fluorescence intensity in the wing 

pouch in osa308/+ and wild-type (w1118) regenerating wing discs at R24. n = 6 

wing discs (osa308/+) and 8 wing discs (w1118). 

Error bars are SEM. Scale bars are 100μm for all wing discs images. *** p < 

0.01, Student’s t-test. 
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S2 Fig. The function of BAP in preventing P-to-A transformation. 

(A-B) Wild-type (w1118) (A) and osa308/+ (B) regenerating wing discs at R24 with 

phospho-JNK immunostaining. 

(C-D) Wild-type (w1118) (C) and tara1/+ (D) regenerating wing discs at R48 with 

Osa immunostaining. 

(E-H) Wild-type (w1118) regenerating wing discs at 0, 24, 48, and 72 hours after 

imaginal disc damage and regeneration with Osa immunostaining. 

Scale bars are 100μm for all wing discs images. 
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