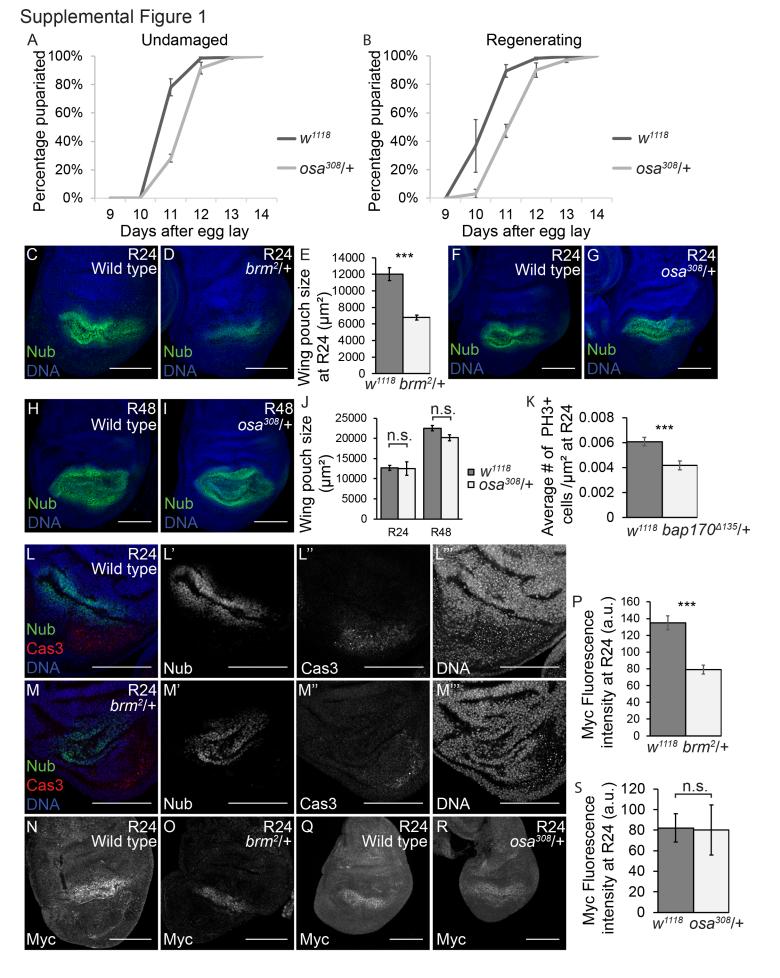
PcG & TrxG			
Gene	Complex	Genotype	Δ Index
Pc	PRC1	Pc ³	7%
Psc	PRC1	Psc ¹	9%
		Psc ^{e24}	-20%
Sce	PRC1	Sce ¹	18%
Scm	PRC1	Scm ^{D1}	46%
E(z)	PRC2	$E(z)^{731}$	-14%
Su(z)12	PRC2	Su(z)12²	-9%
esc	PRC2	esc ²¹	26%
Caf1-55	PRC2, NURF	Caf1-55 ^{DG25308}	-19%
escl	PRC2	escl ^{d01514}	-20%
phol	PhoRC	phol ^{81A}	41%
ash2	COMPASS, COMPASS-like	ash21	16%
trx	COMPASS-like, TAC1	trx ^{E2}	-5%
Utx	COMPASS-like	<i>Utx</i> ^{f01321}	16%
nej	TAC1, ASH1	nej ^{EP1179}	-29%
ash1	ASH1	ash1 ²²	7%
E(bx)	NURF	E(bx) ^{nurf301-3}	-17%
Nurf-38	NURF	Nurf-38 ^{k16102}	-1%
Mi-2	NURD	Mi-2 ⁴	5%
brm	SWI/SNF(BAP & PBAP)	brm ²	-23%
	, , , , , , , , , , , , , , , , , , ,	brm ^{RNAi VDRC37721}	18%
osa	SWI/SNF(BAP)	0Sa ³⁰⁸	28%
Bap170	SWI/SNF(PBAP)	Bap170 ^{∆135}	-19%
Snr1	SWI/SNF(BAP & PBAP)	Snr1 ^{E2}	5%
	, , , , , , , , , , , , , , , , , , ,	Snr1 ^{SR21}	17%
mor	SWI/SNF(BAP & PBAP)	mor ¹	11%
	,	mor ¹²	13%
		mor ^{RNAi} VDRC6969	42%
Bap55	SWI/SNF(BAP & PBAP)	Bap55 ^{LL05955}	23%
Bap60	SWI/SNF(BAP & PBAP)	Bap60 ^{RNAi VDRC12673}	12%
Bap111	SWI/SNF(BAP & PBAP)	Bap111 ^{RNAi} VDRC104361	-28%
PcG/trxG rela	ited proteins		
Gene	Complex	Genotype	Δ Index
psq	·	psq ^{E39}	15%
, Rbf		Rbf ¹⁴	22%
Dsp1		Dsp1 ^{EP355}	25%
grh		grh ^{IM}	6%
lolal		lolal ^{K02512}	1%
			170


Pcl⁵

16%

S1 Table. Screen of chromatin regulators

Pcl

HDAC1		HDAC1 ^{def24}	20%
Sirt1		Sirt1 ^{2A-7-11}	23%
vtd	Cohesin	vtd ⁴	47%
Su(z)2		Su(z)2 ^{1.b7}	-14%
gpp		<i>gpp</i> ⁰³³⁴²	-14%
mod(mdg4)		<i>mod(mdg4)</i> ^{L3101}	19%
su(Hw)		su(Hw) ^{e04061}	25%
lid		lid ¹⁰⁴²⁴	23%
Asx		Asx ^{XF23}	11%
dom	TIP60 complex	<i>dom</i> ^{LL05537}	-3%
E(Pc)		$E(Pc)^{1}$	41%
kis		kis ¹	0%
kto	Mediator	<i>kto</i> ¹	-11%
skd	Mediator	skd ²	21%

S1 Fig. The PBAP complex is required for regenerative growth whereas the BAP complex is not.

(A) Pupariation rates of animals during normal development at 18°C. n = 79 pupae ($osa^{308}/+$) and 173 pupae (w^{1118}) from 3 independent experiments.

(B) Pupariation rates of animals after tissue damage (30° C) and regeneration (18° C). n = 101 pupae (osa^{308} /+) and 155 pupae (w^{1118}) from 3 independent experiments. Because the temperature shift to 30° C in the ablation protocol increases the developmental rate, the pupariation timing of regenerating animals (B) cannot be compared to the undamaged control animals (A).

(C) Wild-type (w^{1118}) regenerating wing disc at R24 with wing pouch marked by anti-Nubbin (green) immunostaining. DNA (blue) was detected with Topro3.

(D) *brm*²/+ regenerating wing disc at R24 with wing pouch marked by anti-Nubbin (green) immunostaining. DNA (blue) was detected with Topro3.

(E) Comparison of regenerating wing pouch size at 24 hours after imaginal disc damage in *brm*²/+ and wild-type (w^{1118}) animals. n = 11 wing discs (*brm*²/+) and 10 wing discs (w^{1118}).

(F) Wild-type (*w*¹¹¹⁸) regenerating wing disc at R24 with wing pouch marked by anti-Nubbin (green) immunostaining. DNA (blue) was detected with Topro3.
(G) *osa*³⁰⁸/+ regenerating wing disc at R24 with wing pouch marked by anti-Nubbin (green) immunostaining. DNA (blue) was detected with Topro3.

(H) Wild-type (*w*¹¹¹⁸) regenerating wing disc at R48 with wing pouch marked by anti-Nubbin (green) immunostaining. DNA (blue) was detected with Topro3.
(I) *osa*³⁰⁸/+ regenerating wing disc at R48 with wing pouch marked by anti-Nubbin (green) immunostaining. DNA (blue) was detected with Topro3.

(J) Comparison of regenerating wing pouch size at 24 and 48 hours after imaginal disc damage and regeneration in osa^{308} /+ and wild-type (w^{1118}) animals. At R24, n = 8 wing discs (osa^{308} /+) and 10 wing discs (w^{1118}). At R48, n = 6 wing discs (osa^{308} /+) and 8 wing discs (w^{1118}).

(K) Average number of mitotic cells (marked with PH3 immunostaining) per μ m² in the regenerating wing primordium at R24 in *bap170*^{Δ 135}/+ and wild-type (*w*¹¹¹⁸) animals. n = 8 wing discs (*bap170*^{Δ 135}/+) and 10 wing discs (*w*¹¹¹⁸).

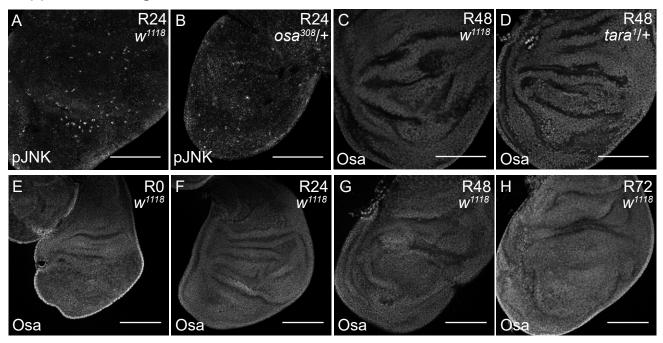
(L) Wild-type (w^{1118}) regenerating wing disc at R24 with Nubbin (green) (L') and cleaved Caspase 3 (red)(L") immunostaining. DNA (blue)(L") was detected with Topro3.

(M) brm^2 /+ regenerating wing disc at R24 with Nubbin (green)(M') and cleaved Caspase 3 (red)(M'') immunostaining. DNA (blue)(M''') was detected with Topro3. (N-O) Wild-type (w^{1118}) (N) and brm^2 /+ (O) regenerating wing discs at R24 with Myc immunostaining.

(P) Quantification of anti-Myc immunostaining fluorescence intensity in the wing pouch in *brm*²/+ and wild-type (w^{1118}) regenerating wing discs at R24. n = 11 wing

43

discs (brm^2 /+) and 12 wing discs (w^{1118}).


(Q-R) Wild-type (w^{1118}) (Q) and osa^{308} /+ (R) regenerating wing discs at R24 with Myc immunostaining.

(S) Quantification of anti-Myc immunostaining fluorescence intensity in the wing pouch in osa^{308} /+ and wild-type (w^{1118}) regenerating wing discs at R24. n = 6 wing discs (osa^{308} /+) and 8 wing discs (w^{1118}).

Error bars are SEM. Scale bars are 100µm for all wing discs images. *** p <

0.01, Student's *t*-test.

Supplemental Figure 2

S2 Fig. The function of BAP in preventing P-to-A transformation.

(A-B) Wild-type (w^{1118}) (A) and osa^{308} /+ (B) regenerating wing discs at R24 with phospho-JNK immunostaining.

(C-D) Wild-type (w^{1118}) (C) and $tara^{1/+}$ (D) regenerating wing discs at R48 with

Osa immunostaining.

(E-H) Wild-type (w^{1118}) regenerating wing discs at 0, 24, 48, and 72 hours after

imaginal disc damage and regeneration with Osa immunostaining.

Scale bars are $100\mu m$ for all wing discs images.