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1 Mathematical Notation
When dealing with a function, round brackets, for example for f : R2 → R, then f(x, y) denotes the function
f evaluated at (x, y). Later, we also use f(y) and multi-index notation, where for the same example in 2D,
y = (x, y) and f(x, y) = f(y).

We consider a pixel image as the set generated from evaluating a function at a set of regularly spaced
collocation points. For example, we define a 1D image of size N with spatial resolution h sampled from
[a, b] from some function f : [a, b]→ R as

f{x̄} = {f(xi)|xi ∈ x̄} (1)

where x̄ = {xi|xi = a + h(i − 1), i = 1, 2, .., N} are the evenly spaced collocation points, and h =
(b − a)/(N − 1). The notation holds not just for pixel images, but also for arbitrary vectors and samplings
with x̄ ∈ RN . To avoid ambiguity with vector norms, we denote the cardinality of a set by #, so in the 1D
image example we have #x̄ = #f{x̄} = N .

Pixel images in higher dimensions follow the convention as follows, with a 3D pixel image, being defined
for f : [ax, bx] × [ay, by] × [az, bz] → R, being defined as f{(x̄, ȳ, z̄)} = {f(xi, yi, zi)|(xi, yi, zi) ∈
x̄ × ȳ × z̄}. Where the number of samples in each direction is Nx, Ny, Nz , with hx, hy, hz , for the x, y, z
directions respectively. Therefore, the total number of samples in the pixel image N = #f{(x̄, ȳ, z̄)} =
NxNyNz . When written as f{x, y, z}, where the arguments are not explicitly vectors, or defined constants,
the expression can be interpreted as to hold for any of sampled collocation points.

2 Adaptive Particle Representation (APR)
The Adaptive Particle Representation (APR) takes a regularly sampled input function, such as pixel images,
and resamples it as a set of particles P and a Resolution Function R(y) defined for all locations y in the
domain Ω. Where particles p are collocation points in space, xp that ’carry’ properties evaluated at that
location, for example the function value fp = f(xp) (or an estimate). In this way, then P is the set carrying
all information for describing Np particles, i.e. P = {{xp}

Np
p=1, {fp}

Np
p=1}, being extended to include sets of

other properties if required. The Resolution Function R : Ω → R defines a local isotropic neighborhood N
at each point in the domain Ω ⊂ R defining a subset of particles that can be used in the reconstruction of the
function at that y. Therefore, R(y) defines a isotropic spatial length scale at every point in the domain.

Formally, we consider a differentiable function f : Ω→ R, that is known at sampled location with fixed
spacing, and is denoted as f{x̄} where #x̄ = N . We represent the function for a given P and R(y) in the
following way

f̂(y) =
∑

xp∈N (y,R(y))

f(xp)ξp(y) (2)
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whereN (y,R(y)) = {x ∈ Ω : |x−y| ≤ R(y)} and ξp(y) = ξ(y, xp) are constants that satisfy
∑
xp∈N (y,R(y)) ξp(y) =

1 with ξp(y) ≥ 01. Where xp ∈ N (y,R(y)), means all particles in P that are in the neighborhood defined
by N (y,R(y)). The Resolution Function is set such that the reconstruction follows,

‖f − f̂
σ
‖∞ ≤ E (3)

where ‖x‖∞ = maxxi∈x̄ xi, E is a user-specified relative error threshold and σ(y) called the Local Intensity
Scale (σ : Ω → R, and is required to satisfy an additional ’smoothness constraint’ given in 16). We call this
bound the Reconstruction Condition, and this holds for any ξp satisfying the conditions above and any P ,
where #(xp ∈ N (y, R(y))) > 0 for all y ∈ Ω (That is, there is at least one support particle in the isotropic
neighborhood set by R(y)).

2.1 Main mathematical result summary
The APR places two further restrictions on the problem defined above. First, we constrain the resolution
function R(y) to also satisfy

R(y) ≤ min
x∈N (y,R(y))

(L(x)) (4)

where L(y) = |Eσ(y)
∂f
∂y

| is called the Local Resolution Estimate and we assume we have access to ∂f
∂y . We

call the constraint 4 the Resolution Bound. If R(y) satisfies the Resolution Bound, then it also satisfies the
Reconstruction Condition (for special σ). We note, that when ∂f

∂y = 0, and hence L(y) is not defined, we
can interpret this simply as the point not placing any constraint on the global resolution function at that point.
Therefore, practically, divergent L(y) does not present an issue. Second, we constrain R(y) to be an Implied
Resolution Function R∗(y), that is, it is constructed out of piecewise constant blocks we call Particle Cells.

2.1.1 Result 1

Here we present a worst-case linear complexity in N algorithm, known as the Pulling Scheme, that can find
the optimalR∗(y) and particle set P that satisfy problems in the form of the Resolution Bound (4) for general
L(y). Where the optimal Implied Resolution Function is the R∗ that satisfies

arg max
R∗∈R∗

∫
Ω

R∗(y)dy (5)

where R∗ is the set of all Implied Resolution Functions R∗(y) that satisfy the Resolution Bound 4. The
optimal P∗ is then the particle set that satisfies, #(xp ∈ N (y,R(y))) > 0, and #P =

∫
Ω

1
R(y)dy.

2.1.2 Result 2

Given the local resolution function σ(y) is sufficiently slowly varying (see 16), and L(y) = |Eσ(y)
∂f
∂y

|, then the

reconstructions f̂ formed using R∗(y) and P will satisfy the Reconstruction Condition 3.

1This positivity constraint can be relaxed, with a slight adjustment to the results, with addition of reconstruction dependent constant
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2.1.3 Result 3

The Implied Resolution Function R∗(y) and Particle Cell set P , can be completely described by a set of
Particle Cells V = {{cip,lp}

Np
p=1|(ip, lp) ∈ Z} (i.e. it can be defined by Np length sets of integers) and

P∗ = {{fp}
Np
p=1}. The combination of these two sets {V,P∗} we call the Adaptive Particle Representation

(APR). 2

2.2 1D Reconstruction Condition and Resolution Bound
In this sub-section, we describe and explain the derivation of the main results from main text in 1D for
simplicity of notation and explaining ideas. First, we go through the derivation of the Resolution Bound, and
how it relates to the Reconstruction Condition.

Let us continue with the problem as outlined above, and consider the function represented as

f̂(y) =
∑

xp∈N (y,R(y))

fpξp(y) (6)

where we do not assume any particular distribution of particles P , but assume there is at least one p ∈
N (y, R(y)) for all y. We then consider the reconstruction error at each point y ∈ Ω as

ε(y) = f(y)− f̂(y), (7)

which by assuming the function has a continuous derivative can express this by taking Taylor series expan-
sions of fp centered at y and using the integral form of the remainder (1) as,

ε(y) = f(y)−
∑

xp∈N (y,R(y))

fpξp(y)

= f(y)−
∑

xp∈N (y,R(y))

(
f(y)ξp(y)+

(y − xp)ξp(y)

∫ 1

0

∂

∂y
f(y + s(xp − y))ds

)
(8)

now by using that
∑
xp∈N (y,R(y))) ξp(y) = 1

ε(y) =
∑

xp∈N (y,R(y))

(y − xp)ξp(y)

∫ 1

0

∂

∂y
f(y + s(xp − y))ds. (9)

We can bound this exact expression of the error, using a uniform estimate, by bounding each integral using
the maximum gradient over the interval and using the triangle inequality and the fact that by definition |(y −
xp)| ≤ R(y) we get

|ε(y)| ≤

 ∑
xp∈N (y,R(y))

|ξp(y)|

R(y) max
x∗∈N (y,R(y))

|∂f(xi)

∂y
| (10)

2With the difference between P and P∗ being the explicit storage of the particle locations in the former
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and in now assuming3 also ξp > 0 therefore
(∑

xp∈N (y,R(y)) |ξp(y)|
)

= 1 so we get

|ε(y)| ≤ R(y) max
x∗∈N (y,R(y))

|∂f(x∗)

∂y
|. (11)

Now returning to the Reconstruction Condition, we can re-write the inifnity norm as a bound on each y ∈ Ω
as

|ε(y)| ≤ Eσ(y). (12)

So, using SEq 11, SEq 12 will be satisfied, if

R(y) max
x∗∈N (y,R(y))

|∂f(x∗)

∂y
| ≤ Eσ(y) (13)

which we can formulation in terms of the Resolution Function as

R(y) ≤ Eσ(y)

maxx∗∈N (y,R(y)) |∂f(x∗)
∂y |

. (14)

This we can then re-write as

R(y) ≤ σ(y) min
x∗∈N (y,R(y))

(g(x∗)) (15)

where g(x) = E

| ∂f(x)
∂y |

which we can see is almost the Resolution Bound, only the local intensity scale σ(y)

is outside the max.

2.3 Restriction on Local Scale Function
To get SEq 15, into the form the Resolution Bound requires an assumption that

σ(y) min
x∈N (y,R(y))

(g(x)) = min
x∈N (y,R(y))

(σ(y)g(x)) (16)

this, therefore, provides a constraint for the information scale σ(y) to ensure this approximation is valid.
For this to approximately hold, σ(y) must be sufficiently slowly varying. That is it must be approximately
constant over N (y, R(y)). In general, this can not be guaranteed except in the case where σ(y) = σ0 is
a constant. However, in the resultspresented here indicate that the reconstruction condition still holds when
σ(y) is a smoothed local estimate of the range of f(y). Further, the restriction is slightly relaxed for Implied
Resolution Functions as discussed in SMat 4.4.

3 General Dimension Reconstruction Condition and Resolution Bound
Here we present derivation of the Resolution Bound in general dimension, it differs little from the one-
dimensional case. We begin with the Reconstruction Condition state point wise as

|f(y)−
∑

xp∈N (y,R(y))

fpξp(y)| ≤ E

σ(y)
(17)

3The procedure from here can be done without this assumption, however this leaves the sum of the coefficients in the resulting
expressions
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which holds must hold for all y ∈ Ω. Therefore again we proceed by considering the exact formulation of
the error as

ε(y) = f(y)−
∑

xp∈N (y,R(y))

fpξp(y) (18)

now if we again assume function is C1 can express by taking Taylor series expansions of fp centered at y
and using the integral form of the remainder for the Taylor series (1)

ε(y) =
∑

xp∈N (y,R(y))

∑
|k|=1

(y − xp)
k

∫ 1

0

∂

∂xk
f(y + s(xp − y))dsξp(y) (19)

where k is using multi-index notation (See (1) for a brief description). In this case, it simply denotes summing
over each spatial direction. Which we note is equivalent to the fundamental theorem of calculus and can be
written as a path integral, and again using the triangle inequality

|ε(y)| ≤
∑

xp∈N (y,R(y))

|ξp(y)||(y − xp)|
∫ 1

0

|∇f(y + s(xp − y))|ds (20)

where∇f(x), represents the gradient operator. Now again given that |y − xp| ≤ R(y) then

|ε(y)| ≤

 ∑
xp∈N (y,R(y))

|ξp(y)|

R(y) max
x∈N (y,R(y))

(|∇f(y)|) (21)

and so then again given we assume ξp(y) > 0 then using this bound, SEq 17 will hold if

R(y) ≤ min
x∈N (y,R(y))

(
Eσ(y)

|∇f(x)|

)
, (22)

which then assuming sufficient smoothness of σ(y), such that the approximation

max
x∈N (y,R(y))

(
|∇f(x)|
σ(y)

)
= max

x∈N (y,R(y))

(
|∇f(x)|
σ(x)

)
(23)

holds then

R(y) ≤ min
x∈N (y,R(y))

(
Eσ(x)

|∇f(x)|

)
. (24)

which is of the required form
R(y) ≤ min

x∈N (y,R(y))
(L(x)) . (25)

where the local resolution estimate is L(y) = Eσ(y)
|∇f(y)| .

4 Particle Cells Definitions
In this section, we introduce the general dimension treatment of Particle Cells. We begin with several defini-
tions that will be useful.

For our given domain Ω ⊂ Rn, with maximum side length Ω0. We begin by extending the Ω to a
square domain Ω∗ ∈ Rd, with edge length Ω0, such that Ω ⊆ Ω∗. Next we introduce Particle Cells C that
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l = 0 l = 1

l = 2 l = 3

c0,0,0Ω0

Ω0

Ω0\21

Ωm\21

Ω0\22

Ω0\23

x

y

c1,0,0 c1,0,1

c1,1,0 c1,1,1

c2,0,0 c2,0,1 c2,0,2 c2,0,3

c2,1,0 c2,1,1 c2,1,2 c2,1,3

c2,2,0 c2,2,1 c2,2,2 c2,2,3

c2,3,0 c2,3,1 c2,3,2 c2,3,3

c3,0,0 c3,0,1 c3,0,2 c3,0,3 c3,0,4 c3,0,5 c3,0,6 c3,0,7

c3,1,0 c3,1,1 c3,1,2 c3,1,3 c3,1,4 c3,1,5 c3,1,6 c3,1,7

c3,2,0 c3,2,1 c3,2,2 c3,2,3 c3,2,4 c3,2,5 c3,2,6 c3,2,7

c3,3,0 c3,3,1 c3,3,2 c3,3,3 c3,3,4 c3,3,5 c3,3,6 c3,3,7

c3,4,0 c3,4,1 c3,4,2 c3,4,3 c3,4,4 c3,4,5 c3,4,6 c3,4,7

c3,5,0 c3,5,1 c3,5,2 c3,5,3 c3,5,4 c3,5,5 c3,5,6 c3,5,7

c3,6,0 c3,6,1 c3,6,2 c3,6,3 c3,6,4 c3,6,5 c3,6,6 c3,6,7

c3,7,0 c3,7,1 c3,7,2 c3,7,3 c3,7,4 c3,7,5 c3,7,6 c3,7,7

s(c0,0,0)=[0,Ω0)x[0,Ω0)

Figure 1: Four levels l of C showing how Particle Cells in 2D ci,l partition the domain Ω on levels l = {0, 1, 2, 3}. Each square in the
figure represents the spatial domain s(ci,l) of a given Particle Cell ci,l.

form a partition of the extended solution domain Ω∗ and R the range of the possible resolution functions,
R = {R : Ω→ R+}. Formally we enumerate the set C, as

C = {ci,l,∀(i, l) : l ∈ N, ik = 0, .., 2l − 1} (26)

where i = i1, .., in is multi-index notation for the spatial indices in each direction, and l indicates the level of
the Particle Cell resolution. These Particle Cells form a partition using divisions of powers of 2, as follows,

γ(ci,l) = [
Ω0

2l
,

Ω0

2l+1
)×

∏
i

[ik
Ω0

2l
, (ik + 1)

Ω0

2l
) (27)

where the product is over all spatial indices and therefore,⋃
ci,l∈C

γ(ci,l) = Ω∗ ×R. (28)

Each Particle Cell forms regular elements, rectangles in 1D, a half-cubes in 2D, and half-hypercubes in 3D.
The 1D example is given in Figure 2. This partitioning is similar to those often used in quad and octree data
structures, and as used in adaptive particle cell lists (2).

We define further properties of Particle Cells, reflecting their spatial domain, and resolution domain sep-
arately. The spatial domain of a Particle Cell is defined as,

s(ci,l) =
∏
i

[ik
Ω0

2l
, (ik + 1)

Ω0

2l
) (29)

SFigure 1 shows an example of s(ci,l) of different Particle Cells for a range of l in 2D. The spatial domain of
a Particle Cell s(ci,l) is the area of the domain Ω∗ of which it partitions. Effectively forming dyadic cubes of

10



the domain Ω (3). The resolution domain of a Particle Cell is defined as

r(ci,l) = [
Ω0

2l
,

Ω0

2l+1
). (30)

Further, we define l(ci,l) = l, gives the level of ci,l and i(ci,l) = i can be used to give the spatial
coordinate of ci,l. Now given these definitions we can now define relationships between the Particle Cells
considering them as constructing a tree structure as shown in Figure 2. We define the set of descendants of a
particle cell ci,l as

D(ci,l) = {cdi,l ∈ C : s(cdi,l) ⊂ s(ci,l)}, (31)

which is the set of all Particle Cells who’s spatial domain overlaps with ci,l but have a smaller resolution than
r(ci,l). The first set of descendants, called children, are shown for a cell in green in Figure 2F. Formally,
children of ci,l are those cci,l ∈ D(ci,l) such that l(cci,l) = l(ci,l) − 1. We also then denote the parent of ci,l,
as ci/2,l−1, where ci,l is simply then the child of ci/2,l−1.

We also define the set of neighbors of a Particle Cell ci,l, by first defining the interaction Particle Set

I(ci,l) = {cni,l ∈ C : ∃x ∈ s(cni,l),y ∈ s(ci,l) : x ∈ N (y, R(y))} (32)

which is the set of all Particle Cells cni,l for which there is exists a x in its spatial domain and also a y in the
spatial domain of ci,l such that they could interact, i.e. x ∈ N (y, R(y)). Then using the interaction Particle
Cell set, we define the neighbor Particle Cell set as

B(ci,l) = {cni,l ∈ I(ci,l) : @cn
′

i,l ∈ I : s(cni,l) ⊂ s(cn
′

i,l)} (33)

which is the set of all neighboring Particle Cells of highest level that ci,l can interact with (including ci,l).
This definition and the theorems proven below hold across general definitions of the interaction neighborhood
N (y, R(y)). For simplicity of explanation, here we present examples with the isotropic interaction neigh-
bourhood N (y, R(y)) = {x ∈ Ω : |x − y| ≤ R(y)}, as introduced earlier. For the isotropic interaction
neighborhood, the neighbor Particle Cell set is simply the neighboring Particle Cells of ci,l on the same level.
This is illustrated in Figure 2F with a 1D example of a neighbor Particle Cell set B(ci,l) in blue.

Using these we define a set ND ∈ C that contains all descendants of a particular Particle Cell ci,l and its
neighbors as

ND(ci,l) =
⋃

cni,l∈B(cvi,l)

⋃
cdi,l∈D(cci,l)

cdi,l. (34)

Then any Particle Cell set V ⊂ C forms a partition of the spatial domain Ω∗ iff,⋃
cvi,l∈V

s(cvi,l) = Ω∗. (35)

Then we can also define the set of Particle Cell sets V that form a spatial partition as

S = {V : V ⊂ C,
⋃

cvi,l∈V
s(cvi,l) = Ω∗}. (36)

Lastly, we formally introduce an additional property of a Particle Cell called type, t(ci,l), discussed in the
previous section for Particle Cells when compared to a Particle Cell set T in the following way

t(ci,l, T ) =


1, ci,l ∈ T
2, ci,l /∈ T and ∃cni,l ∈ B(ci,l) : cni,l ∈ T
3, otherwise

where we name the three different Particle Cell types as seed, boundary, and filler respectively.
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4.1 Implied Resolution Function
Now we define the Implied Resolution Function for a set of Particle Cells V that forms a spatial partition. We
begin by now defining a characteristic function in general dimension as

φ(y, ci,l) =

{
1 y ∈ s(ci,l)
0 otherwise

(37)

then the Implied Resolution Function R∗(y) for a set of Particle Cells V that forms a partition of the spatial
domain is

R∗(y,V) =
∑
ci,l∈V

φ(y, ci,l)
Ω0

2l
(38)

where we often drop the dependence on V below, unless required. One can interpret this Resolution Function
as being built out of cube blocks of length Ω0

2l
, as shown in Figure 2D for 1D. In 1D the blocks are squares, 2D

cubes, and 3D hypercubes. (Note: this is different from how Particle Cells are used to partition the resolution
domain)

4.2 Local Particle Cell set
Given these definitions, we can now represent the Local Resolution Estimate L(y) as Particle Cells. We
assume that we have the following inequality to satisfy

R(y) ≤ min
x∈N (y,R(y))

L(x). (39)

We introduce the general dimension Local Particle Cell (LPC) set L ⊆ C that has members such that

L = {ci,l ∈ C
∣∣∣∃ (L(y),y) : y ∈ s(ci,l), L(y) ∈ r(ci/2,l−1)}, (40)

where ci/2,l−1 indicates the parent of ci,l. In words, this takes the Local Resolution Estimate L(y) and finds
those Particle Cells ci,l whose parents intersect with L(y) at locations inside the spatial domain s(ci,l). An
example was given is given for 1D in Figure 2G. We also define another set we call the natural Local Particle
Cell (nLPC) set

Ln = {ci,l ∈ C
∣∣∣∃ (L(y),y) ∈ γ(ci,l)}, (41)

in words takes the Local Resolution Estimate L(y) and finds those Particle Cells that the function intersects.
The second definition comes in use slightly later for the equivalence optimization and is called ’natural’ due
to its simpler definition. In all except special cases, L does not form a partition of the spatial domain.

4.2.1 Maximum resolution level

In practice it is useful to specify a minimum level lmin and maximum level lmax. In these cases there then is
effectively a minimum Lmin(y) = Ω0

2lmin
and maximum value Lmax(y) = Ω0

2lmax
. Where for both L and Ln

this effectively truncates any values with l below lmin to lmin and above lmax to lmax. (See SMat 13 for a
description of implementation and constructing these sets).
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4.3 Optimal Valid Particle Cell sets
Now we have a way to relate, a Particle Cell set to a Resolution Function, if now we re-formulate SEq 39, in
terms of this Implied Resolution Function we have

R∗(y) ≤ min
x∈N (y,R(y))

L(x). (42)

we can now use the Implied Resolution Function and present the following theorem:

Theorem 1. V will define an Implied Resolution Function R∗(y) thats satisfies SEq 42 for all y ∈ Ω∗, for a
given L, and called valid iff it forms a spatial partition and

1. ∀cvi,l ∈ V then {L ∩ ND(cvi,l)} = ∅

In words, for all Particle Cells ci,l in V , the set is valid, if and only if, there are no Particle Cells that are
descendants of ci,l or its neighbors in L.
Proof :
Given a valid Particle Cell set V , we suppose there exists at least one combination of y ∈ Ω∗ and y∗ ∈
N (y, R(y)), such that

L(y∗) < R∗(y) (43)

is true and therefore condition SEq 42 is violated. In addition, there must exist cvi,l ∈ V such that y ∈ s(cvi,l).
From SEq 38, we have

R∗(y) =
Ω∗

2l(c
v
i,l)

(44)

and therefore if L(y∗) < Ω∗

2
l(cc

i,l
) then there must exist some c∗i,l ∈ L, for which l(c∗i,l) < l(cvi,l) and y∗ ∈

s(c∗i,l). Now since y∗ ∈ N (y, R(y)) and l(c∗i,l) < l(cvi,l) it implies that

c∗i,l ∈ ND(cvi,l) (45)

and therefore

∃cai,l ∈ V : {L ∩ ND(cai,l)} 6= ∅ (46)

and proves Theorem. 1 by contradiction. �
Now we consider conditions on V that would define it as optimal. Consider V to be the set of all Particle

Cell sets V that satisfy Theorem 1 and are valid. Then a Particle Cell set V will be optimal if it satisfies

arg max
V∗∈V

∫
Ω∗
R∗(y,V∗)dΩ∗. (47)

which is equivalent to finding the largest everywhere R∗(y) that satisfies SEq 42. Which is equivalent to

arg max
R∗∈R∗

∫
Ω∗
R∗(y)dΩ∗. (48)

where R∗ is the set of all Implied Resolution Functions defined as SEq 38 (R∗ : Ω∗ → R+) that satisfy
SEq 42. We can now state the following theorem for satisfying SEq 47,
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(c(10,10),6) (c(20,20),5)  for        ={c(10,10),6 ,c(20,20),5}

Figure 2: Example of the optimal particle cell set V (right) for L = {c(10,10),6, c(20,20),5} in 2D, and the individual optimal solutions
V∗(c(10,10),6) (left) and V∗(c(20,20),5) (right) that can be used to combined using the separability property to construct V . The
particle cells are colored in the following way, a particle cell is blue if its type is a seed if it is in the local particle cell set, ci,l ∈ L, a
cell is green if it is of type boundary and therefore has a neighbor that is in the local particle cell set and is grey if it as of type filler.

Theorem 2. Given V ⊂ C, that is valid, V will satisfy SEq 47 and be optimal, iff, there does not exist a
W ⊂ C where W 6= V and is valid for L and where V can be formed from the elements of W and its
descendants. Formally, V is optimal, if there does not exist any valid W such that for any cwi,l or cvi,l the
following holds (

cwi,l ∈ W, cvi,l ∈ V
)

: cvi,l ∈ D(cwi,l). (49)

In words, V , is optimal, if there does not exist another arrangement of Particle Cells that form a spatial
partition and is valid while having a larger resolution anywhere in the domain.
Proof :
Lets consider two Particle Cell sets V andW , where both are valid with respect to L, andW 6= V , and V is
optimal. Now we suppose that, SEq 47 is violated, that is∫

Ω∗
R∗(y,V)dΩ∗ <

∫
Ω∗
R∗(y,W)dΩ∗, (50)

that we can re-write as ∫
Ω∗

∑
ci,l∈V

φ(y, ci,l)
Ω0

2l
dΩ∗ <

∫
Ω∗

∑
ci,l∈W

φ(y, ci,l)
Ω0

2l
dΩ∗. (51)

Given the above inequality to hold, there must exist y ∈ Ω∗ where the following holds for some cvi,l ∈ V and
cwi,l ∈ W ,

0 < φ(y, cvi,l)
Ω0

2l(c
v
i,l)

< φ(y, cwi,l)
Ω0

2l(c
w
i,l)

(52)

which implies that l(cwi,l) < l(cvi,l) and further that s(cvi,l) ⊂ s(cwi,l) and hence

cvi,l ∈ D(cwi,l), (53)
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which violates Theorem 2, and thus concludes the proof through contradiction �.
Therefore a Particle Cell set V is an Optimal Valid Particle Cell (OVPC) set if it satisfies both Theorem 1

and Theorem 2.

4.4 Particle Cells and smoothness of the Local Intensity Scale
In practice, the use of an Implied Resolution Function relaxes the smoothness assumption on the Local
Intensity Scale σ (SMat 2.3). For a continuous Resolution Function an equality for the expression

σ(y) min
x∈N (y,R(y))

(g(x)) ≈ min
x∈N (y,R(y))

(σ(y)g(x)) (54)

would require a constant σ(y) for general f . However, we note when using an Implied Resolution Function as
in the APR we only will detect changes that would change the Particle Cell level l. Now for a given problem
the Particle Cell level can be calculated as,

l = dlog

(
|Ω|σ(x)

g(x)

)
e (55)

with a −1 if the equivalence optimization is being used. We find that SEq 54 is then equivalent to

dlog

(
|Ω|

σ(x)g(x)

)
e = dlog

(
|Ω|

σ(y)g(x)

)
e (56)

for all x ∈ N (y,R(y)) and y ∈ Ω. This is a weaker bound then SEq 54 potentially allowing non-constant
σ(y). Hence, the situation is not quite as restrictive as SEq 54 implies when using an Implied Resolution
Function.

5 Pulling Scheme
Here we present the additional results based on the above that are used by the Pulling Scheme. These are the
general definitions of the three properties from the previous chapter. We begin by defining

Definition 1. V∗(ci,l) is the optimal Particle Cell set for L = {ci,l}

That is the OVPC set for a LPC set with only one Particle Cell ci,l.

5.1 Self-similarity and production of individual solutions
The first is an observation that the solution V∗(ci,l) is highly predictable and shows self-similarity regarding
its relative local structure. This is shown for two different ci,l in 2D in SMat 2, where the Particle Cells
are colored by their type. The solutions are defined by a central seed Particle Cell, surrounded by a layer of
boundary and then filler cells. The remainder of the domain is then filled with Particle Cells increasing by one
level across neighbors, adding particle cells on the same level to maintain a spatial partition. An illustrative
example in 1D is given in SMat 3.

5.2 Separability
We present Lemma 1, that is the basis of the separability property used in Pulling Scheme.
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L = c6,38E H

Seed Particle Cell 
Boundary Particle Cell
Filler Particle Cell

1. 2. 3.

1.) Add neighbours of seed pc as boundary pc
2.) Add neighbours of boundary pc as �ller pc
3.) Continue adding neighbours as �ller pc, at lower 
level, or same level if it would create an overlap, to �ll 
domain

Figure 3: Schematic how an OVPC set V can be generated when L = {ci,l} has only one Particle Cell. We give Particle Cells an
additional property called type, based on how the Particle Cell was added to the set V . Particle cells that are in both V and L are of type
seed. Particle cells that are neighbors to a seed cell are type boundary. All others, are of type filler. V is created by first adding ci,l (1.),
and its neighbors (2.) on the same level and their neighbors (3.). The domain is then filled, allowing only one level change at once, and
ensuring the resulting set forms a spatial partition.

0

0.25
0

0.25

0 0.2 0.4 0.6 0.8 1
0

0.25

c 6,19

c 6    ,38

L = c 6,19 ,c 6,38E H

Separability Property of V

R* (y)

R* (y)

R* (y)

y

Seed Particle Cell (in     )
Boundary Particle Cell

L

Figure 4: The Pulling Scheme computes the local Optimal Valid Particle Cell (OVPC) set V (Particle Cells of all colours) for a given
Local Particle Cell (LPC) set L (light blue Particle Cell). Due to the separability property (see SMat 5.2), this can be done separately for
each Local Particle Cell (top and middle). The complete result for the combined set is then formed by taking the smallest Particle Cell
at each location (bottom).
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Lemma 1. Given V ⊂ C is optimal, with respect to L, and let V∗(ci,l) ⊂ C be optimal for the local set
L∗(ci,l) = {ci,l}. Then,

V = minhull

 ⋃
cli,l∈L

V∗(cli,l)

 (57)

where for T ⊆ C,
minhull(T ) = {csi,l ∈ T : {D(csi,l) ∩ T } = ∅}. (58)

In words, Lemma 1 states that the optimal solution V , for a given LPC set L, can be constructed by
forming the valid and optimal set for each Particle Cell in L separately V∗(ci,l), and then forming a set with
the Particle Cells ci,l at each point y with the smallest Implied Resolution Function R∗(y,V∗(ci,l)) (highest
level l). We call the above property, separability. SMat 2 shows the property in 2D and Figure 3A in 1D.
One can intuitively confirm that the configurations are optimal, by replacing any Particle Cell by its parent,
and then checking if Theorem. 1 holds.
Proof :
Lets consider V , which is optimal for L, and V̂ = minhull

(⋃
cli,l∈L

V∗(cli,l)
)

. Now propose that, there exists

some ĉi,l ∈ V̂ such that
∃c∗i,l ∈ L : c∗i,l ∈ ND(ĉi,l) (59)

and therefore V̂ would not be valid by Theorem 1. However, given that V∗(c∗i,l) is valid, it forms a spatial
partition, and ĉi,l /∈ V∗(c∗i,l), therefore

∃c̄i,l ∈ V∗(c∗i,l) : c̄i,l ∈ D(ĉi,l) (60)

and since V∗(c∗i,l) ⊂
⋃
cli,l∈L

V∗(cli,l) then,

D(ĉi,l) ∩
⋃

cli,l∈L

V∗(cli,l) ⊇ c̄i,l (61)

6= ∅ (62)

therefore violating Lemma 1 as ĉi,l ∈ V̂ . Therefore, by contradiction, given Lemma. 1 holds, V̂ will be valid.
Now, let us propose, that V̂ is not optimal, that is there exists someW such that∫

Ω∗
R∗(y, V̂)dΩ∗ <

∫
Ω∗
R∗(y,W)dΩ∗, (63)

following the arguments for the proof of Theorem 2 above this implies there would exist some cwi,l ∈ W and
some ĉi,l ∈ V̂ such that

ĉi,l ∈ D(cwi,l). (64)

Given that ĉi,l ∈ V̂ there exists some c̄i,l ∈ L such that ĉi,l ∈ V∗(c̄i,l). However, given cwi,l /∈ V∗(c̄i,l) and
V∗(c̄i,l) is optimal then, (

ND(cwi,l) ∩ V∗(c̄i,l)
)
⊇ ĉi,l 6= ∅. (65)

Since c̄i,l ∈ L, thenW cannot be valid. Implying that V̂ must be optimal for L and given the optimal solution
is unique implies

V̂ = V (66)

�.
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5.3 Redundancy of Particle Cells
The third property relates to the redundancy of Particle Cells in L that have descendants in L,

Lemma 2. Given any two Particle Cells ci,l and cpi,l, where ci,l ∈ D(cpi,l) then

minhull({V∗(ci,l),V∗(cpi,l)}) = V∗(ci,l). (67)

In words, the optimal valid solution of Particle Cells for which one is the descendant of the other will be
the individual valid solution of the descendant Particle Cell.
Proof :
Lets suppose that,

∃ĉi,l ∈ minhull({V∗(ci,l),V∗(cpi,l)}) : ĉi,l /∈ V∗(ci,l) (68)

and then
ĉi,l ∈ V∗(cpi,l) (69)

and Lemma 2 is violated. However, given the definition of the minhull operation, and the fact that V∗(ci,l)
must form a spatial partition this implies that

∃c∗i,l ∈ V∗(ci,l) : ĉi,l ∈ D(c∗i,l). (70)

However, given that V∗(cpi,l) is optimal by definition, then if c∗i,l /∈ V∗(c
p
i,l), then by Theorem 2

cpi,l ∈ ND(c∗i,l) (71)

and since ci,l ∈ D(cpi,l) by construction then also

ci,l ∈ ND(c∗i,l) (72)

but this results in a contradiction, as then V∗(ci,l) would not be valid by Theorem. 1 �.

5.4 Equivalence Optimization
The following results show that the OVPC set V can be obtained, by solving for a smaller set of Particle Cells
with a maximum level one less than L and then directly replacing some Particle Cells in the produced sets
with their child cells. First, let us define

Definition 2. Let Vn be the optimal Particle Cell set for the natural Local Particle Cell set Ln formed from
L(y) as in SEq 41

Then we have the following result,

Lemma 3. Given Vn is optimal and valid for Ln then

V =

{
ci,l ∈ C

∣∣∣∣ (ci,l ∈ Vn, t(ci,l,Ln) = 3) or
(
ci/2,l−1 ∈ Vn, t(ci/2,l−1,Ln) < 3

)}
(73)

where V is the optimal valid Particle Cell set for L and ci/2,l−1 denotes the parent Particle Cell of ci,l.
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VVn

Figure 5: Example of the Equivalence property and how the natural Local Particle Cell Ln set can be used to form Vn, that can then be
directly used to compute the OVPC V for L using Lemma 3.

In words, V is constructed by taking all those Particle Cells that have type filler in V , and taking the
children of all Particle Cells in Vn that are of type seed or boundary (Where type is defined relative to
Ln). Which means that finding for Vn with respect to Ln is equivalent to V for L. This is useful because,
#L > #Ln and the maximum level lnmax in Ln is one level less than lmax of L by construction (See
SMat 5.7). See SFigure 5 provides an example in 2D. Proof :
Here we need to show that if Vn is the OVPC for Ln and we define

V̂(Vn) =

{
ci,l ∈ C

∣∣∣∣ (ci,l ∈ Vn, t(ci,l,Ln) = 3) or
(
ci/2,l−1 ∈ Vn, t(ci/2,l−1,Ln) < 3

)}
(74)

then V̂ = V where V is the OVPC for L. We do this by relying on Lemma 1. That we can decompose our
solution of

Vn = minhull

 ⋃
cli,l∈Ln

V∗(cli,l)

 (75)

and

V = minhull

 ⋃
cli,l∈L

V∗(cli,l)

 (76)

then since by construction for c∗i,l ∈ L there exists a c∗ni,l ∈ Ln such that c∗i,l ∈ D(c∗ni,l ), and l(c∗i,l) = l(c∗ni,l )+1

that if we can show that V̂(V∗(cn∗i,l )) = V∗(c∗i,l) then

V = minhull

 ⋃
cli,l∈Ln

V̂(V∗(cli,l))

 (77)

= V̂

minhull

 ⋃
cli,l∈Ln

V∗(cli,l)


= V̂(Vn)
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the operations can be taken out of the union and minhull, due to the operation always taking the smallest
Particle Cell and the direct correspondence between the two sets.

Therefore, we consider such a L = {c∗i,l} and Ln = {c∗ni,l } and consider Vn = V∗(c∗ni,l ) and V̄ =

V̂ (V∗(c∗ni,l )). Now lets assume that Vn is valid and optimal solution with respect to Ln, and assume that V̄ is
not valid with respect to L.

If V̄ in not valid, then there must exist cvi,l ∈ V̄ such that

c∗i,l ∈ ND(cvi,l). (78)

Given this holds, then we consider the validity of Vn with respect to Ln. We treat this in two cases.
First, suppose that l(c∗i,l) < l(cvi,l) + 1, and cvi,l ∈ Vn which implies that l(cn∗i,l ) < l(cvi,l). Also, given

c∗i,l ∈ D(cn∗i,l ) then

cn∗i,l ∈ ND(cvi,l). (79)

If cvni,l ∈ Vn, where cvi,l is the child of cvni,l , then since ND(cvi,l) ⊂ ND(cnvi,l ) then also

cn∗i,l ∈ ND(cnvi,l ). (80)

This leads to Vn violating Theorem 1 with respect to Ln.
Now in the second case, l(c∗i,l) = l(cvi,l) + 1, implying that l(cn∗i,l ) = l(cvi,l). However, this implies that

cvni,l ∈ Vn as otherwise t(cvi,l,Ln) = 1 and l(cvi,l) = l(c∗i,l). Therefore again sinceND(cvi,l) ⊂ ND(cnvi,l ) then
also

cn∗i,l ∈ ND(cnvi,l ) (81)

and Vn is invalid with respect to Ln.
Therefore, given we assume Vn is valid w.r.t Ln then V̄ must also be valid w.r.t L.
The second step is to show that when V̄ is optimal w.r.t L then also Vn is to Ln. So again we assume that

Vn is optimal, but V̄ is not. We follow on from the proof of Theorem 2 which gives us that therefore there
exists someW such that cvi,l ∈ V̄ and cwi,l ∈ W and s(cvi,l) ⊂ s(cwi,l) and hence

cvi,l ∈ D(cwi,l). (82)

For this there are again two cases, one where cvi,l ∈ Vn and the other where cnvi,l ∈ Vn where cvi,l ∈ D(pnv)
and l(cnvi,l ) = l(cvi,l)− 1.

First, let us consider the case of cci,l ∈ Vn. We then have that cvi,l ∈ D(cwi,l). However, since c∗i,l ∈ D(cn∗i,l )

and cwi,l /∈ V̄ means that

c∗i,l ∈ ND(cwi,l) (83)

which directly implies that

cn∗i,l ∈ ND(cwi,l). (84)

However, this would make Vn not valid.
Now in the second case we have cnvi,l ∈ Vn, and hence t(cnvi,l ,Ln) < 3. So we know that,

c∗ni,l ∈ B(cnvi,l ) (85)
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R * (y)

Figure 6: The basic idea of the Pulling Scheme. R∗ is propagated outwards from higher levels to lower levels utilizing property 1 and
property 2 of OVPC sets. When two solutions meet, only one needs to be propagated. Therefore, by propagating solutions from lmax

to lmin and propagating the solution to higher levels using the filler type Particle Cells, the solution can be constructed directly, without
checking the validity.

such that

c∗i,l ∈ ND(cwi,l). (86)

This now contradicts thatW can be valid for L. Hence given Vn is optimal for Ln, V̄ must also be optimal
for L.

Now given there is a unique optimal solution then necessarilly,

V̂ (V∗(c∗ni,l )) = V∗(c∗ni,l ) (87)

for any c∗i,l ∈ D(c∗ni,l ), and l(c∗i,l) = l(c∗ni,l ) + 1, and from our arguments above this leads to V̂(Vn) = V and
concludes the proof. �

5.5 Additional Algorithm Description
The Pulling Scheme uses all these properties to directly construct V by propagating solutions from individual
Particle Cells in L using property 1, one level at a time starting from the highest level of the Particle Cells
in L. SFigure 6 shows a schematic of two solutions being propagated from two Particle Cells. When two
solutions meet at a Particle Cell, the precedence of one solution depends on the Particle Cells type where they
meet. Precedence is ordered from seed>boundary>filler. This order represents the solution that provides the
’tighter’ constraint on the resolution function. Then only the solution with precedence needs to be propagated.
The Pulling Scheme can be implemented in many different ways here we use an implimentation that uses a
data structure that explicitly stores C the full Particle Cell tree. This is the form of Pulling Scheme used in
this paper. However, other forms are possible that do not require the explicit storing of the tree structure.
SAlgorithm 1, gives more explicit pseudo-code of the algorithm given in the main text.

5.6 Integral neighborhood optimization
From SFigure 9, we observe that a single ci,l results in a large, high-resolution area in the solution. If we
instead take Vn and create Vi in the following way

Vi =

{
ci,l ∈ C

∣∣∣∣ (ci,l ∈ Vn, t(ci,l,Ln) > 1) or
(
ci/2,l−1 ∈ Vn, t(ci/2,l−1,Ln) = 1

)}
(88)

where now boundary Particle Cells are also kept at their original resolution, then, if we use the alternative
neighborhood of
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Data: Local Particle Cell set L
Result: Optimal Valid Particle Cell set V(L)

Function pulling scheme(L)
Represent all possible Particle Cells C from lmax to lmin in a multi-resolution pyramid and set all

Particle Cells type to EMPTY;
forall Particle Cells c ∈ C where c ∈ L do

c.type = SEED
end
for lc = lmax : lmin do

/* Fill neighbors (Step 1) */
forall neighbors n of c ∈ C(lc) where c.type is (SEED or PROPAGATE) do

if n.type is EMPTY then
n.type = BOUNDARY

end
/* Set Parents (Step 2) */
forall parents p of c ∈ C(lc) where c.type is (SEED, PROPAGATE, or ASCENDANT) do

p.type = ASCENDANT
end
if lc > lmin then

/* Set Ascendant Neighbors (Step 3) */
forall neighbors n of c ∈ C(lc − 1) where c.type is ASCENDANT do

if n.type is EMPTY then
n.type = ASCENDANT NEIGHBOR

if n.type is SEED then
n.type = PROPAGATE

end
/* Set Fillers (Step 4) */
forall children d of c ∈ C(lc − 1) where c.type is (ASCENDANT NEIGH or PROPAGATE)
do

if (d.type is EMPTY then
d.type = FILLER

end
end
return all type SEED, BOUNDARY and FILLER Particle Cells in C as V;

Algorithm 1: The Pulling Scheme algorithm. The Pulling Scheme efficiently computes the OVPC set V
from the Local Particle Cell set L using a temporary pyramid mesh data structure. C(l) denotes all Particle
Cells on level l. See SFigure 7 for a schematic of the main steps.
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l c

l c - 1

l c

l c - 1

l c

l c - 1

l c

l c - 1

Step 1 

Step 2 

Step 3 

Step 4 

Figure 7: Schematic illustrating the four different steps in Algorithm 1 for the Pulling Scheme. The colour of the dots, identifies the
type of Particle Cell. Blue dots represent seed, boundary in green, filler in grey, ascendant in red, ascendant neighbour in yellow. These
four steps occur on each level from the highest level lmax to lowest lmin. Step 1, seed Particle Cells, or propogate, add neighbour
Particle Cells as boundaries on level lc. Step 2, seed and ascendant Particle Cells set their parents (lc − 1) to ascendant. Step 3, the
ascendant particles on lc − 1 set their vacant neighbours to ascendant neighbours. Step 4, Particle Cells of type ascendant neighbours
and propogate on level lc − 1 set empty children in lc to filler.

{V,P}
Integal 
NeighbourhoodVn

Figure 8: Left the nOVPC Vn generated usingLn and the corresponding V and particle samplingP (right) for the integral neighborhood
optimization that has been used in for the results in this paper.
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N (y, R(y))i = {x ∈ Ω : |(y − x)|
∫ 1

0

1

R(y + s(x− y))
ds ≤ 1} (89)

for the representation of the function as in SEq 17, instead of the isotropic neighborhood, then R∗(y,Vi)
will also satisfy the Reconstruction Condition. This then results in a smaller P∗ as shown in SFigure 2. In
practice this results in a ≈ 10 − 30% reduction in #V , and is used for the 3D APR implimentation used in
this paper.

As in the isotropic neighborhood case, we can sample directly using Vn, with only slight adjustment

xp(ci,l) =

{ ∏
i

{Ω∗

2l
(ik + 1/4), Ω∗

2l
(ik + 3/4)} t(ci,l) = {1}

{Ω∗

2l
(ik + 1/2)} t(ci,l) = 2, 3

(90)

5.6.1 Fulfillment of Reconstruction Condition

Now we briefly show that Reconstruction Condition is satisfied for the integral neighborhood definition and
R∗(Vi,y).

We have the integral interaction neighborhood

N (y, R(y))i = {x ∈ Ω : |(y − x)|
∫ 1

0

1

R(y + s(x− y))
ds ≤ 1} (91)

and show that if we are using the local resolution estimate L(y) = Eσ(y)
|∇f(y)| that this neighborhood guarantees

satisfaction of the Reconstruction Condition, given that R(y) ≥ L(y) and the assumption on the Local
Intensity Scale σ(y) being sufficiently smooth over the integral path that σ(y) ≈ σ(x) can be used.

Starting from the following bound as presented above,

ε(y) ≤
∑

p∈N (y,R(y))

|(y − xp)|
∫ 1

0

|∇f(y + s(xp − y))|dsξp(y) (92)

which we wish to satisfy the Reconstruction Condition, so

Eσ(y) ≥
∑

p∈N (y,R(y))

|(y − xp)|
∫ 1

0

|∇f(y + s(xp − y))|dsξp(y) (93)

which we can re-write as
1

Eσ(y)

∑
p∈N (y,R(y))

|(y − xp)|
∫ 1

0

|∇f(y + s(xp − y))|dsξp(y) ≤ 1 (94)

and substituting for L(y) and assuming σ(y) is O(1) over the interval gives∑
p∈N (y,R(y))

|(y − xp)|
∫ 1

0

1

L(y + s(xp − y))
dsξp(y) ≤ 1 (95)

now given our reconstruction kernel conditions, this will hold if for every point,

|(y − xp)|
∫ 1

0

1

L(y + s(xp − y))
ds ≤ 1 (96)

now given the assumption that R(y) ≤ L(y) then the above will hold if the following also holds

|(y − xp)|
∫ 1

0

1

R(y + s(xp − y))
ds ≤ 1 (97)

which is the integral interaction neighborhood stated above.
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5.7 Computational and memory complexity
Here we address the computational and memory complexity of the Pulling Scheme using explicitly storage
of C as described above. We will discuss the equivalence optimized version described in the previous section
as this is used in practice.

First we consider the size of C, for a given problem with lmin and lmax, where N = 2dlmax , then storing
C requires a data-structure with

NC =

lmax−1∑
l=lmin

2dl

=
2d(lmax+1) − 2dlmin

(2d − 1)
(98)

entries, because the highest level in the structures is lmax − 1. If we then consider the ratio of the size of the
data-structure to the original data size N , we get

NC
N
≤ 1

2d − 1

(
1− 1

N

)
(99)

where we have set lmin = 0 as a worst case. Therefore, in the largeN limit, we get NCN ≈
1

2d−1
. Which gives

us upper bounds of N in 1D, N3 in 2D, and N
7 in 3D for the size of the required data-structure. Given there

are only seven unique values that are needed for the algorithm, then each only requires 3 bits of information
to be stored. Although this is not likely in practice, due to available data types, the Pulling Scheme requires
at most 3N

2d−1
bits in memory.

For the worst-case computational complexity, we can consider L∗ = C∗, where C∗ is C restricted to
lmax − 1. That is every Particle Cell is in L∗. Now each, step requires iteration over the data-structure
givenO(NC) operations. All parent and neighbour operations scale with dimension d, and therefore for fixed
d, have a fixed cost. Therefore, again we can get an upper bound on all steps taken across the algorithm
described in SAlgorithm 1 as O(NC). Therefore, the whole algorithm is worst-case O(NC) which is O(N).

In practice, the performance of this algorithm is more complicated depending on N , L and the spatial
distribution of Particle Cells. From the steps above, we can see that the number neighbor searches at the
highest resolution are the number of seed Particle Cells at that level. Further, if we ignore the PROPOGATE
nodes, the most costly steps scale with the number of seed Particle Cells (#(L ∩ V)). This is compared to
the neighbor and filler Particle Cells that incur proportionally fewer operations. Hence tentatively we would
expect the performance to scale as O(N + #(L ∩ V)), with the different term dominating depending on
situation. Further, the exact cost also would depend on the spatial distribution of L.

6 Particle sampling
As in the 1D case, the last step given V , is to determine the particle locations and sample them forming P∗
and the APR. In general dimension, we take the identical approach to 1D. The set of points in P = {xp}

Np
p=1

are chosen such that for each Particle Cell ci,l ∈ P a particle p is added to P as

xp(ci,l) = {Ω∗

2l
(ik + 1/2)} (100)

for ik = 1, .., d andNp = #V . The function, is then sampled at locations fp = f(xp) to formP∗ = {fp}
Np
p=1.

Such a sample satisfies the requirement that #(xp ∈ N (y, R(y))) > 0. SFigure 9, shows an example of
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{V,P}Vn

Figure 9: Left the nOVPC Vn generated using Ln and the corresponding V and particle sampling P (right).

Vn on the left and then V and P on the (right). #(xp ∈ N (y, R(y))) is in all cases greater then one,
with maximum resolution areas, producing a local grid identical to a pixel image representation. If, different
constrainsts on the reconstruction function are required, i.e. a different number of particles, or different
layout, these could also be used. Here, we again present the simplest case.

6.1 Optimality
Although simple, such a sampling is also in a sense optimal for a given Implied Resolution Function. We
define an optimal sampling of a given R(y) as the sampling that satisfies

#P =

∫
Ω

1

R(y)d
dy (101)

and #(y ∈ N (y, R(y))) > 0 for all y ∈ Ω. Intuitively, if we consider 1
R(y)

d as the point-wise required
density (defined now for the ’hyper-volume’ dependent on the dimension d), then again ignoring edge effects,
this means that satisfying SEq 101 leads to this density being everywhere exactly realized. Further, this
integral is also satisfied for a constant regular sampling such as pixels.

If we consider, the integral SEq 101 for the implied resolution function R∗(y), as∫
Ω

1

R∗(y)d
dy =

∫
Ω

1(∑
ci,l∈V φ(y, ci,l)

Ω
2l

)d d (102)

y

=
∑
ci,l∈V

1

= #V = #P (103)

as required, and therefore P∗ is optimal in the sense of SEq 101. Hence, the Pulling Scheme in addition to
providing an optimal Implied Resolution Function also provides an inherent ’optimal’ sampling in general
dimension.
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6.2 APR as {Vn,P∗}
From SFigure 9 and Lemma 3, there is a redundancy in directly storing V , instead Vn could be stored along
with each t(ci,l) for each cell (w.r.t Ln). In this way, the particles could be sampled from Vn using

xp(ci,l) =

{ ∏
i

{Ω∗

2l
(ik + 1/4), Ω∗

2l
(ik + 3/4)} t(ci,l) = {1, 2}

{Ω∗

2l
(ik + 1/2)} t(ci,l) = 3

(104)

where then the locations of P are still implicit now from Vn and their type t(ci,l). This representation results
in lower memory overhead, but at the cost of complexity, therefore depending on the use-case the simpler
combination of {V,P∗} may be preferable. Such a formulation is used for file-storage in this paper.

7 Practical considerations
In the above, we have ignored particle considerations of, how do we estimate ∂f

∂y and the impact of noise.
Here we will briefly discuss these issues, including a discussion on the continuous resolution functions. The
results here are presented in 1D but apply to the general dimension case.

7.1 Discrete sampling
First, we consider the what the ideal sampling of ∂f

∂y {x̄} would be that would allow reconstruction of all
y ∈ Ω (at off particle locations) then the samples

∂f

∂y
{xi} = max

x∈[xi−h/2,xi+h/2)

∂f

∂y
(x) (105)

where h is the sampling distance between points for x̄. These estimates would guarantee the APR reconstructs
the function y ∈ Ω, and not just at sample locations. This follows from the fact that this would produce an
upper bound on the true derivative across every interval.

7.2 Impact of noisy Local Resolution Estimate L(y)
However, even in noise-free situations, we do not have the ability to sample the derivative directly. Instead,

we observe | ∂̂f∂x | = |∂f∂x | + ε. Therefore, it is interesting how errors from the estimation of the derivative
translate into the violation of the Reconstruction Condition for a given relative error bound E.

Therefore, we consider how an error in L(y) translates into the error in the solution compared to the
user-set relative error bound E. That is we assume that instead of L(y) we observe,

L∗(y) =
Eσ(y)

|∇f |(1− α)
(106)

where α represents the maximum relative error in |∂f∂x | (We assume here the 0 ≥ α < 1). We need only
consider reductions of the magnitude of the gradient as increases will not impact the Reconstruction Condition
(they simply increase the resolution wastefully). So then if we consider what the worst-case observed E∗ is
relative to the desired E for a given α (See below SMat 7.2.1 for derivation) we get

E∗ − E
E

=
1

1− α
− 1 (107)
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L(y) = (1+β)Ω/2l Ω/2l

Ω/2l

Ω/2l-1

Ω/2l-2

Ω/2l-1

βΩ/2l

(1-β)Ω/2l

L*(y) = (1+κ)L(y)

Figure 10: Analysis of errors in local resolution estimate L(y)

where the error is taken to occur at a local maximum of the derivative such that the error has an impact on the
solution. Interpreting this, we can see that if α = 0.1, i.e. ten percent absolute error in the gradient, then the
ratio E∗−E

E = 0.111, and so if E = 0.1 then the observed relative error worst case would be 0.111. So a ten
percent error has been related to an eleven percent increase in the realizable relative error.

This bound is insightful, as it tells us that if we have a given α and want to guarantee some realized Ê,
we can increase the user set E, to retain the bound despite the error (i.e. such that E∗ = Ê). However, this is
at the cost of a higher number of particles. Alternatively, we can re-arrange the bound, as

α = 1− 1

1 + (E∗−E)
E

. (108)

which then tells us how large a relative error in our derivative we can tolerate if we wish to have a set accuracy
for the relative error bound.

The analysis above is based on relative errors. How do we then consider absolute errors ε? For a given
ε, the relative error will be greatest with the derivative is small. Interestingly, these are the regions of our
solution where it is likely R∗(y) ≤ L(y). That is, the large relative error will not impact the solution. The
y ∈ Ω that are most likely to contribute to V will have a ’relatively’ smaller α due to the larger magnitude of
L(y).

7.2.1 Derivation

Here we derive the above bound for the impact of error in the estimation of L(y) on the ability of the APR to
reconstruct the function within the Reconstruction Condition. Now if we suppose that we have the following
scenario, as shown in SFigure 10

L(y) = (1 + β)
Ω

2l
(109)

that is subject to some error, such that the observed local resolution estimate is

L∗(y) = L(y)(1 + κ) (110)

for this error to impact the solution such that it reduces the reconstruction error, the Particle Cell level must
decrease, giving a new Particle Cell level l∗ = l − φ which requires

L(y)κ > (1− β)
Ω

2l
(111)
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which gives us

κ >
1− β
1 + β

(112)

and that φ = dκe. Now we wish to consider the worse case change in the resolution that would occur, given
a particular relative error κ. That is we wish to consider when the error between the true local estimate and
the observed quantized value from the particle cell, given by

∆ =
Ω

2l−φ
− L(y)

=
Ω

2l
(2φ − 1− β) (113)

is at its largest, which occurs when

κ =
(2φ − 1− β)

1 + β
. (114)

Now for the APR we have L(y) = Eσ(y)
|∇f | , and then our observed local resolution estimate can be written as

L∗(y) =
Eσ(y)

|∇f |
(1 + κ) (115)

and if we now assume that the error in the observed L(y) comes from a underestimate of the gradient magni-
tude we can re-write this as

L∗(y) =
Eσ(y)

|∇f |(1− α)
(116)

where

α = 1− 1

1 + κ
. (117)

Now we wish to know how a change in α would impact our observed relative error bound E∗, compared to
our desired relative error bound E, that is

E∗ − E = |∇f |Ω
2l

(2φ − 1− β)
1

σ(y)
(118)

and therefore the relative error is

E∗ − E
E

= |∇f |Ω
2l

(2φ − 1− β)
1

Eσ(y)
(119)

where we assume that the maximum gradient magnitude occurs at y within its neighborhood N (y, R(y)).
Substituting in for the true gradient magnitude |∇f | = Eσ

(1+β) Ω

2l

we have

E∗ − E
E

=
(2φ − 1− β)

1 + β

= κ

=
1

1− α
− 1 (120)
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and similarly

α = 1− 1

1 + (E∗−E)
E

. (121)

This is derived for the error occurring occuring across a particle cell. How does this extend to other Particle
Cells? The above analysis has assumed that the error occurs at its maximum value across the whole path.
Any paths that cover more than one Particle Cell, will have contributions proportional to the length of the
path in each cell. The worst case, would be that this largest relative error occurs everywhere. It is in this
case, that this upper bound should hold. Further development of this bound and analysis in the future seems
warranted, in addition, to the increase in cost for particles through increases in resolution.

7.3 Impact of noisy particles f̂(yp)

Now if we consider that we are only able to sample noisy estimates of the function for our particles, f̂p =
f(xp) + η(xp), where η is some noise process. If we assume that we are still able to estimate L(y) such that
R∗ is the true optimal solution we will find our observed error is

E∗ =
|f(y)−

∑
xp∈N (y,R(y))(f(xp) + η(xp))ξp(y)|

σ(y)
(122)

then given L(y) is the noise-free solution then the Reconstruction Condition holds and we get

E∗ = |A+
1

σ(y)

∑
xp∈N (y,R(y))

(xp)ξp(y)| (123)

where we have |A| ≤ E. Therefore as E → 0, A→ 0 and therefore the infinity norm of the observed relative
error |E∗|∞ will tend to the maximum | 1

σ(y)

∑
xp∈N (y,R(y)) η(xp)ξp(y)| across the domain.

Therefore, the noisy input data, provides an upper bound of the observed relative error E∗ regardless of
adaptation, and user set E. Note, we provide a more detailed analysis of the impact of noise in the following
section SMat 7.4 showing that the APR converges at an optimal rate to a bias estimate of the noise-free APR
given a non-trivial Resolution Function that satisfies the Resolution Bound. This is consistent with the simple
analysis here.

7.4 Convergence rate of MSE of APR
Next we consider the case of again known R(y) and the convergence behavior of the MSE of the APR as the
number of input samples N that the APR can be estimated from is increased, aligning with the analysis of
wavelet thresholding in (4).

We first provide the results, and then the derivation follows. If we assume that R∗(y) satisfies the Re-
construction Condition for parameter E = ε and particles values are estimated by the original Gaussian
distributed noisy samples in R(y) of every particle, then the APR will have the following properties as the
total sampling N increases:

1. Reconstruction at particle locations from the image follows, |E[f̂{xp}−f(xp)]| < 1
21/d and Var[f̂{xp}−

f(xp)] ≤ σ
NCp

2. Reconstruction using the noisy particles at arbitrary locations follows |E[f̂(y)− f(y)]| < (1 + 1
21/d )ε

with Var[f̂{xp} − f(xp)] ≤ A0σ
2

N , i.e. an introduced error factor of 1
21/d ε
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3. The expected MSE of the reconstruction followsR(f̂ , f,N) ≤ A1σ
2

N + ((1 + 1
21/d )ε)2

where Cp is a constant that depends on the size of R(xp), A0 a constant that depends on the Resolution
Function around y and the reconstruction method and sampling used. Lastly A1 depends on the Resolution
Function and reconstruction method across the domain. It is worth noting that the bound (1 + 1

21/d )ε is not
tight and given assumptions on function within R(y) of y, and better than worst-case reconstruction this
could be reduced to be closer to ε. Effectively the bias introduced into the representation is a result of the
spatial average used to estimate the particles.

Hence, we can see that assuming an R(y) that satisfies the Resolution Bound, guarantees optimal con-
vergence to a solution that is within bounded distance of our noise-free reconstruction. However, we have
assumed that for the given APR that R∗(y) satisfies the Reconstruction Condition and Resolution Bound.
However, with noisy function input, this would not be guaranteed to hold. However, if knowledge of the
relative error bounds of estimation of L(y) are known, then the above results could be adapted using to
incorporate the results on noisy adaptation in SMat 7.2.1.

7.4.1 Derivation

Lets consider a reconstruction of the APR, where we assume that R(y) is noise free, either a continuous
solution satisfying the Resolution Bound, or the implied Resolution Function R∗(y) for an APR with σ(y) =
1 and relative error E = ε (to avoid confusion with the expectations below), where we have estimated the
particle intensity values f̂(xp) from some noisy sampling g{x̄}, with N points, estimated as

f̂(xp) =
1∑

x∈N (y,R(y))

∑
x∈N (xp,R(xp))

g{x} (124)

that is simply the weighted sum of all points in g{x̄} within R(y) of xp. As we have done in the benchmark
results above. We assume, as above, that each value of g can be decomposed as

g{x} = f(x) + η(x) (125)

where η(x) ∼ N (0, σ). That is, each value is normally distributed with zero mean and standard deviation σ,
and the process is independent of each x. For comparison with the wavelet results in (4) we are interested in
the statistical properties of the estimate f̂(xp) as N →∞.

First, let’s consider the expected value of the error in the estimated particle intensity,

E[f̂(xp)− f(xp)] = E[
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

g{x} − f(xp)] (126)

now let us consider a further decomposition of this sum in the following way

E[f̂(xp)− f(xp)] = E[
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

(f(xp) + h(x) + η(x))]− f(xp) (127)

where we use 125, and we define h(x) by decomposing the noisy function component in terms of g{x} =
f(xp) + h(x) + η(x). Now given that the expectation is linear, we can isolate the random variable, giving us

E[f̂(xp)− f(xp)] =
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

h(x)

+
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

E[η(x)] (128)
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now given that each η(x) is independent and identically distributed (i.i.d) with mean zero, then,

E[f̂(xp)− f(xp)] =
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

h(x). (129)

here we relate the two as g(x) = h(x) + f(xp). Now, given that R(y) satisfies the Reconstruction Condition
for ε, and let M = 1∑

x∈N(y,R(y))
(the inverse of the number of sample points used in the neighborhood), then

we can then bound this as,

|E[f̂(xp)− f(xp)]| = |
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

h(x)|

≤ ε
(
M − 1

M

)
(130)

where the factor comes from the assumption that h(xp) = 0. However, given we have also that R(y) satisfies
the Resolution Bound in addition to the Reconstruction Condition then the maximum gradient is bounded
across the interval. This allows us to get an upper bound on the growth of h(x) by assuming the it is at the
worst case the local minimum or maximum of a piece-wise linear (in 1D) sections. Using this upper bound
we get the tighter bound that,

|E[f̂(xp)− f(xp)]| = |
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

h(x)|

≤ ε

21/d
(131)

where d is the dimension. Hence, our estimate will converge to a value within ε
21/d of the true value as

N →∞. Now lets consider the variance of this estimate, that is what is the asymptotic behavior of the MSE
of our estimate as again N →∞. So we have

Var[f̂(xp)− f(xp)] = Var[
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

g{x} − f(xp)] (132)

which following the same steps as above we get,

Var[f̂(xp)− f(xp)] = Var[
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

η(x)] (133)

which is the variance of the uniformly minimum variance unbiased estimator of the normally random variable
η and is therefore

Var[f̂(xp)− f(xp)] =
σ2

M
. (134)

Now assuming that f has a bounded first derivative, then for sufficiently large M that M > 0 such that the
above makes sense then

Var[f̂(xp)− f(xp)] =
σ2

C0N
. (135)

since R(y) defines an isotropic region representing a constant (hyper) volume fraction of the domain, and
C0 is some point dependent constant. Therefore, each estimate f̂(xp), converges to within ε of f(xp), with
assymptotic rate of 1

N .
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7.4.2 Pointwise approximation using R(y)

Next, we consider what we asymptotically get for the expected MSE that we align with (4) and call the risk,

R(f̂ , f,N) =E[
1

N

N∑
i=1

(f̂(xi)− f(xi))
2] (136)

=
1

N

N∑
i=1

E[(f̂(xi)− f(xi))
2] (137)

now using the fact that E[X2] = Var[X] + (E[X])2, we get,

R(f̂ , f,N) =
1

N

N∑
i=1

(
Var[(f̂(xi) + f(xi))] + (E[(f̂(xi)− f(xi))])

2
)

(138)

and now using the same steps from SEq 130 and SEq 135 above,

R(f̂ , f,N) =
σ2

N2

N∑
i=1

1

Ci
+

1

N

N∑
i=1

 1∑
x∈N (y,R(y))

∑
x∈N (y,R(y))

h(x)

2

(139)

where Ci is a point dependent volume scaling constant. Now we using the fact that R(y) follows the Recon-
struction Condition we have

R(f̂ , f,N) ≤ σ2

N2

N∑
i=1

1

Ci
+

ε2

22/d
(140)

Now since Ci are non-zero constants, we can then bound them by 1
Ci
≤ A, such that we get

R(f̂ , f,N) ≤ Aσ2

N
+

ε2

22/d
(141)

therefore, we see that we have asymptotic convergence to a biased estimator that behaves as 1
N , which is the

optimal rate with convergence that depends on A, which is a function of R(y).

7.5 APR reconstruction
In the above, we assumed that for every point in the domain we used R(y) to estimate the point. What if
instead we only estimate f(xp), and then reconstruct the intensities at the other points, as in the APR. We
now repeat the above steps. So now we have

E[f(y)− f̂(y)] = E[f(y)−
∑

xp∈N (y,R(y))

f̂{xp}ξp] (142)

= f(y)−
∑

xp∈N (y,R(y))

E[f̂{xp}]ξp

(143)
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using our result from SEq 130 above, we have

E[f(y)− f̂(y)] = f(y)−
∑

xp∈N (y,R(y))

f(xp) +
1∑

x∈N (xp,R(xp))

∑
x∈N (xp,R(xp))

h(x)

 ξp

=
∑

xp∈N (y,R(y))

h1(xp) +
1∑

x∈N (xp,R(xp))

∑
x∈N (xp,R(xp))

h2(x)

 ξp (144)

where h is defined similarly as above. Now h2(x) is bounded by ε
21/d , for arbitrary particles and worst case

the Reconstruction Condition gurantees h1(x) ≤ ε. Hence we have

|E[f(y)− f̂(y)]| ≤
∑

xp∈N (y,R(y))

ε+
1∑

x∈N (xp,R(xp))

∑
x∈N (xp,R(xp))

ε

21/d

 ξp

≤ (1 +
1

21/d
)ε. (145)

Therefore, any reconstruction will have a an expected value with bias smaller than (1 + 1
21/d )ε at all points

y ∈ Ω. What is the variance of our estimator? So we have

Var[f(y)− f̂(y)] = Var[
∑

xp∈N (y,R(y))

f̂{xp}ξp] (146)

= Var[
∑

xp∈N (y,R(y))

 1∑
x∈N (xp,R(xp))

∑
x∈N (xp,R(xp))

g{x}

 ξp]

= Var[
∑

xp∈N (y,R(y))

 1∑
x∈N (xp,R(xp))

∑
x∈N (xp,R(xp))

η(x)

 ξp] (147)

here we have to be careful because the η(x) are no longer all independent due to the overlap of the neighbor-
hood causing different original sample points enter the variance multiple times. Therefore we have to take
care of these by also considering the covariance between the samples,

Var[f(y)− f̂(y)] =
∑

xp∈N (y,R(y))

ξ2
pVar[

1∑
x∈N (xp,R(xp))

∑
x∈N (xp,R(xp))

η(x)]+

2
∑

(xp,xq)∈N (y,R(y)):xp 6=xq

ξpξqCov[
1∑

x0∈N (xp,R(xp))∑
x0∈N (xp,R(xp))

η(x0),
1∑

x1∈N (xq,R(xq))

∑
x1∈N (xq,R(xq))

η(x1)] (148)

which we evaluate, as the only terms that will be non-zero in the covariance will be for the cases with x0 = x1.
If we let γp,q be the number of shared points in the original noisy sampling for the support particles p and q
then we get,

Var[f(y)− f̂(y)] = σ2
∑

xp∈N (y,R(y))

1∑
x∈N (xp,R(xp))

ξ2
p+ (149)

2
∑

(xp,xq)∈N (y,R(y)):xp 6=xq

ξpξq
γp,qσ

2

(
∑

x1∈N (xq,R(xq))
)(
∑

x0∈N (xp,R(xp)))
(150)
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Next, we introduce the constants Cp such that NCp =
∑

x∈N (xp,R(xp)), (ignoring complications due to the
discrete nature of N ) . We then note that γp,q is bounded by the smaller of the number of points in p or q, we
shall choose p to be the larger, then we have,

Var[f(y)− f̂(y)] ≤ σ2

N

 ∑
xp∈N (y,R(y))

ξ2
p

Cp
+ 2

∑
(xp,xq)∈N (y,R(y)):xp 6=xq

ξpξq
Cp

 (151)

hence, our estimator converges to a biased estimate at the optimal rate of 1
N for all y ∈ Ω.

So then lastly, we consider the Risk for our reconstruction, that is the expected asymptotic behavior of
the MSE, following the steps again as above,

R(f̂ , f,N) =E[
1

N

N∑
i=1

(f̂(xi)− f(xi))
2] (152)

=
1

N

N∑
i=1

Var[f̂(xi)] +
1

N

N∑
i=1

(
E[f̂(xi)− f(xi)]

)2

(153)

≤ 1

N

N∑
i=1

σ2

N

 ∑
xp∈N (y,R(y))

ξ2
p

Cp
+ 2

∑
(xp,xq)∈N (y,R(y)):xp 6=xq

ξpξq
Cp


+ ((1 +

1

21/d
)ε)2 (154)

again we can see that if we bound our constants that are independent of N by some constant A1 then we have

R(f̂ , f,N) ≤ A1σ
2

N
+ ((1 +

1

21/d
)ε)2 (155)

therefore, we again have that the MSE will converge with optimal rate 1
N , to a value with bias ((1+ 1

21/d )ε)2 >
ε2, where ε is the user set parameter E.

7.6 Noise distribution of APR particles
Following the same procedure as the analysis above for the convergence of the APR for increasing N , we
can also compare the noise distribution of the original input pixels (g(x)) and the computed particle values
(f(xp)). This depends on both the original noise distribution in the image and technique used to compute
particle values from the original pixels. If we assume, as above, that the particle intensities are estimated by
the average of all pixels within the particles Particle Cell in the following way

f̂(xp) =
1

2d(l−lmax)

∑
x∈s(ci,l)

g{x} (156)

where d is the dimension and l is the Particle Cell level of ci,l and the sum is all (2d(l−lmax)) pixels in the
Particle Cell. Immediately we observe that for Particle Cells at pixel resolution, that is with l = lmax the
particle and pixel noise distributions are identical. For particles on lower levels, we have the following general
results, again following from above we get the expectation of the distrbution as

E[f̂(xp)− f(xp)] =
1

2d(l−lmax)

∑
x∈s(ci,l)

h(x)

+
1

2d(l−lmax)

∑
x∈s(ci,l)

E[η(x)] (157)
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and variance of

Var[f̂(xp)− f(xp)] = Var[
1

2d(l−lmax)

∑
x∈s(ci,l)

η(x)] (158)

where η(x) is the noise distribution of the original pixel image at x. Further analysis requires information on
the distribution η(x). We consider two special cases of Gaussian and Poisson noise below.

7.6.1 Gaussian Noise

Under the assumption that η(x) are independent and Gaussian with zero mean and fixed variance σ2, this is
the problem we consider above in SMat 7.4.1, giving us that the particles will remain Gaussian distributed
with variance that depends on the Particle Cell level l given by

Var[f̂(xp)− f(xp)] =
σ2

2d(l−lmax)
, (159)

and a bias bounded by E
21/d .

7.6.2 Poisson Noise

Here we consider the case for sufficiently large intensity values such that for a image with Poisson noise the
noise can be approximated as being approximately Gaussian distributed with zero mean and pixel dependent
variance of f(x). Giving us that

Var[f̂(xp)− f(xp)] =
1

22d(l−lmax)

∑
x∈s(ci,l)

f(x), (160)

that with a bounded error of E
21/d can be approximated by

Var[f̂(xp)− f(xp)] =
f(xp)

2d(l−lmax)
. (161)

That is each particle can be approximated by a Gaussian distribution with again a bias mean, and a particle
dependent variance that will also depend on the level of the Particle Cell. This is the case for the synthetic
images we use here, with results for a synthetic image shown in SFigure 11.

8 Comparison with continuous resolution functions
In the formulation of the APR, we have restricted the solution in two main ways. Firstly, by satisfying the
more restrictive Resolution Bound instead of simply the Reconstruction Condition, and also by using an
Implied Resolution Function R∗(y) instead of a more generation continuous Resolution Function. Below
we provide a few results and discussion on the impact of these added restrictions and their impact on the
adaptivity of the APR.

8.1 Reconstruction Condition vs. Resolution Bound
First, we consider the relationship between the optimal solution to the Reconstruction Condition Rc(y) and
optimal solution to the Resolution BoundRb(y). Since the Resolution Bound is derived from an upper bound
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Figure 11: The figure compares the noise distribution for a synthetic N = 1203 sphere image with medium noise and blur for the APR
(E = 0.1) and original image compared to the ground truth. The noise distribution for the original image is a Poisson approximation
generated as in SMat 15. The top two histograms compare the distribution of the noisy pixels (blue), and noisy particles (orange),
when subtracted from the ground-truth image. The left plot shows the raw histogram, and on the left the normalized distributions. The
remaining four histograms then shows sub-sets of normalized distributions grouped by Particle Cell level for the corresponding particle.
For the pixels intensities, all pixel values where used that were contained within Particle Cells of the appropriate level. The middle left
distributions are identical, as particles at the maximum level lmax are directly the pixel values.
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on the Reconstruction Condition (given the appropriate assumptions), a Resolution Function satisfying the
Resolution Bound also satisfies the Reconstruction Condition. Hence the Reconstruction Condition is a
tighter bound on R(y) and Rc(y) ≤ Rb(y) for all y. The difference between Rb and Rc is the results of
bounding the error by taking the uniform estimate of the maximum of the gradient across the interval SEq 21,
instead of the exact path integral in SEq 19. Without restrictions on both E and the function f , unfortunately,
I know of no upper bound on this difference. However, if we consider f that is infinitely differentiable and
the limit as E → 0, we observe that either: f will be constant in some interval and R(y) will also reach
some lower bound with a constant zero derivative, or, Rb(y), Rc(y) → 0. In the first case trivially the two
bounds are equal. In the second case, since f is assumed to be infinitely differentiable from its Taylor series
expansion the difference between |Rc(y)− Rb(y)| → 0 as Rc(y), Rb(y)→ 0. Hence, given assumptions in
the small E limit, the solutions converge.

8.2 Bounds for Implied Resolution Function
Next, we consider what the relationship between Rb(y) and the Implied Resolution Function R∗(y) gener-
ated by the Optimal Valid Particle Cell set V . Given thatRb(y) andR∗(y) both satisfy the Resolution Bound,
but, R∗(y) is restricted to be piecewise constant then necessarily Rb(y) ≤ R∗(y). The difference between
these two solutions represents the loss in adaptation resulting from constructing our solution of Particle Cells
instead of allowing continuous adaptation. Since the solutions are both optimal (R∗ over restricted solutions)
for the Resolution Bound, we can bound the worst case difference between these two solutions.

Let us have some V that satisfies the Resolution Bound for L(y). We then ask, in the worst case how
much larger could Rb be compared to R∗? That is, what is the bound on Rb(y)

R∗(y) given only knowledge of R∗.
We can evaluate this question by considering a bound for all particle cells ci,l ∈ V . Given that ci,l belongs

to the optimal set, from Theorem 2, we know that its parent ci/2,l must violate Theorem 1. Explicitly, that is

{L ∩ ND(ci/2,l)} ⊇ cni,l. (162)

Now, there are many combinations of L(y) and Rb(y) that could results in that this situation. However, the
worst case, i.e. that allowing the largest Rb(y) over the spatial domain of the particle cell is unique (ignoring
equivalent configurations). The worst case occurs when L(y) is the largest distance from the particle cell at
y∗, and occurs exactly on the interval between two particle cells i.e. L(y∗) = Ω

2l−1 and for y∗ ∈ s(cni,l). If we
assume that L(y) is a dirac delta, where y∗ is the only non-zero point (again worst case as it provide minimal
restriction on the solution). In this way the optimal continuous solution of the Resolution Bound for this is

R∗b(y,y
∗)

{
dist(y,y∗) dist(y,y∗) ≥ L(y∗)

L(y∗) dist(y,y∗) < L(y∗)
(163)

where dist(., .) is the Euclidean distance between two points. This can be trivially proven by directly con-
sidering the solution for an R∗b(y,y

∗) + δ for δ > 0, and noting that the bound no longer holds. We can use
this then to consider the direct upper bound, i.e. within s(ci,l) how large can R∗b(y,y

∗) be? If we consider
the distance of the furthest point from y∗ that is in s(cni,l) we get a worst case of R∗b(y,y

∗) ≤ (4 Ω
2l

)d1/2 and
hence, we have

Rc(y)

R∗(y)
≤ 4
√
d (164)

where d is the dimension. Hence this corresponds to ratios bounded by 4, ≈ 5.65 and ≈ 6.93 in 1D, 2D and
3D respectively.
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Figure 12: The first plot shows the ratio of a numerical estimate of the ratio between the optimal continuous solutions to the Resolution
Bound Rb and Resolution Condition Rc for a Guassian 1D benchmark problem plotted against the relative error E. We note that
smaller values of E resulted in a prohibitive computational cost. The second plot shows the relative execution time in 3D of a numerical
estimate to Rb and the execution time of the pulling scheme for a fixed ratio content benchmark plotted against increasing number of
pixels N . We note that the continuous solution became computationally prohibitive beyond a maximum width of 128 (Beyond which
the continuous solution took over 2 hours to estimate compared to less than .01 seconds for the pulling scheme).

8.3 Bounds on particle sampling
Can we construct a similar bound on the Particle Sampling P . Here we consider samplings restricted to those
that satisfy

#P =

∫
Ω

1

R(y)d
dΩ. (165)

We note that if we assume an analytical form of R(y) then P that are far smaller then those obeying the
above bound can be constructed. However, we only consider samplings that follow SEq 165. Given this
assumption, we can then ask if we can also bound #P

#Pc , where Pc is some sampling satisfying SEq 165 for
Rc(y). If we consider the same worst case scenario as above we get,

#Pc ≤ #P
∫
s(ci,l)

1

(dist(y,y∗))d
dy (166)

where ci,l and y∗ are as above, and we note that the argument is independent of the exact level l, and so we
consider the ratio of each individual particle cell to be the same giving the multiplication factor. In one and
two dimensions this has closed form, in 1D we have

#Pc ≤ #P
∫ 4

3

1

(y)d
dy

= log(
4

3
)#P (167)
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and in 2D

#Pc ≤ #P
∫ 4

3

∫ 4

3

1

(
√
x2 + y2)d

dydx

= #P(−2G+
1

2
π log(

4

3
) + i

(
PolyLog(2,

−3i

4
)− PolyLog(2,

3i

4
)

)
) (168)

where G is Catalan’s constant and PolyLog is the PolyLogarithm. This corresponds to #P
#Pc ratios being

bounded by 3.47 in 1D, 24.3 in 2D, and using numerical integration in 3D 221.252. However, with the
exception of possibly 1D, I know of no methods to realize these ratios. Further, there bounds are also not
likely tight in practice, and I am unclear as to their utility.

8.4 Observed numerical bounds
To find more likely ratios of #P

#Pc in practice, we numerically estimated the continuous optimal Resolution
Functions using an O(N2) brute force approach. The brute force approach relies on testing increasing sized
R(y) for each location. The first plot in SFigure 12 shows the ratio of Rc over Rb for the test function
in SFigure 16 for decreasing E. We find that as suggested by the discussion above Rc

Rb
→ 1 as E → 0.

Unfortunately, the solving for smaller values of E than 0.01 was too computationally costly.
To illustrate this high computational cost, in the second plot SFigure 12, we show a comparison in 3D

between the brute force solution to the Resolution Bound and the Pulling Scheme for a fixed ratio benchmark.
We find that the brute force solution takes between two and six orders of magnitude longer to compute. This
corresponds to the brute force solution taking over 2 hours for an image of N = 1283, compared to less than
.01 seconds for the Pulling Scheme. We note that efforts were undertaken to optimize the brute force scheme
and reduce the computational cost including acceleration using OpenMP to provide a ’fairer’ comparison
with the Pulling Scheme. This high cost placed a limit on the numerical analysis that could easily be done
comparing the two solutions. Next we provide numerical results on the relationship between the implied
Resolution FunctionR∗ and the continuous estimate ofRb. We focus here on 3D. The first plot of SFigure 13,
shows the mean ratio of Rb

R∗ , averaged over all pixel locations against increasing number of objects for both
noisy and noise-free original images. We find the average ratio is less than 3.2 across both benchmarks, with
a decrease in the mean ratio for an increase in objects for the images. Therefore, on average we find the ratio
is two to three times less than the worst-case bound of ≈ 6.93.

We use the estimate of Rb to also estimate the #P
#Pc ratios. From the above analysis, we found a worst

case bound of 221.25. In the second plot of SFigure 13 we show the estimated ratios against increasing
information content for sampling based on both the isotropic and integral neighborhood sampling used in
the performance benchmarks (SMat 5.6). We find the ratio becomes constant for increasing information
content, with the isotropic sampling having a ratio of approximately 11, and 5.5 for the integral neighborhood
sampling. Although this is only for one test example, we find a ratio that is much less than the worst case
bound given above.

First, we found that the bound between Rc and Rb in 1D was close to one for reasonable ranges of
E << .3, and tends to one asE → 0. In 3D using the later discussed implementation, we found the observed
mean ratio of the implied and continuous resolution functions in 3D was between 2 and 3, depending on the
image content and level of noise. Further, we find that the worst-case bounds for particle ratio #P

#Pc are do
not appear to be tight in practice, finding ratios of less than 11 in 3D benchmark examples (compared to the
worst-case bound of 225.21).
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Figure 13: The first plot shows the mean ratio of the numerical estimate of the optimal continuous Resolution Function Rb(y) over the
implied Resolution Function R∗(y) using the integral neighborhood sampling optimization in 3D against number of objects for both
noisy and noise-free images. The second plot shows the ratio of the number particles in the APR #P divided by the theoretical sampling
#Pc based on Rc. We plot the ratios for both the isotropic and integral neighborhood sampling (SMat 5.6) in 3D against the number of
objects.

9 General (α,m)-Reconstruction Condition
In the previous derivations, we have placed conditions on the reconstruction of the function value everywhere.
Here we show that the same procedure allows bounds on arbitrary derivatives of f .

So now we wish to calculate some high order derivative α, with order m derivative operators. This
requires that f is m + |α| times differentiable. Here, we replace the classic Reconstruction Condition with
the (α,m)-Reconstruction Condition, defined as

|
∑

xp∈N (y,R(y))

fpξα,p(y,xp)−
∂|α|f(x)

∂xα
| ≤ σα(y)Eα,m (169)

where α uses multi-index notation, to represent the desired derivative and ξαp (y) is the derivative recon-
struction kernel with convergence order m. Following the same steps as above, if we require the following
conditions

∑
xp∈N (y,R(y))

(xp − y)kξα,p(y,xp) =

 1 if,k = α
0 elseif, |k| < m+ |α|
bounded otherwise

then we have the following,

εα(y) =
∑

xp∈N (y,R(y))

∑
|k|=m+|α|

(y − xp)
k |k|
k!

∫ 1

0

(1− t)|k|−1 ∂
|k|

∂xk
f(y + s(xp − y))dsξα,p(y,xp) (170)

which we can bound by,

|εα(y)| ≤ γ(m+ |α|) max
|k|=m+|α|

max
x∈N (y,R(y))

|k|
k!

(∣∣∣∣∂|k|f(x)

∂xk

∣∣∣∣)R(y)m+|α||ξm+α,p| (171)
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where |ξm+α,p| =
∑

xp∈N (y,R(y)) |ξα,p(y,xp)|. Now here, the coefficients, will be proportional to of
1

R(y)|α|
, hence we replace this with the following global bound of |ξm+α,p| ≤ Cα

1
R(y)|α|

, where Cα is
some constant that depends on the reconstruction function and local particle orientations, giving us now

|εα(y)| ≤ γ(m+ |α|) max
|k|=m+|α|

max
x∈N (y,R(y))

|k|
k!

(∣∣∣∣∂|k|f(x)

∂xk

∣∣∣∣)R(y)mCα. (172)

Next, by making this reconstruction error satisfy our (α,m)-Reconstruction Condition SEq 169 we get

R(y) ≤

(
Eα,mσα(y)

Cαγ(m+ |α|) max|k|=m+|α|
|k|
k! maxx∈N (y,R(y))|∂

|k|f(x)
∂xk |

)1/m

. (173)

which if we again apply a smoothness assumption on σα making the usual substitution giving again

R(y) ≤ min
x∈N (y,R(y))

(Lα,m(x)) (174)

where now

Lα,m(y) =

(
Eα,mσα(y)

Cαγ(m+ |α|) max|k|=m+|α|
|k|
k! |

∂|k|f(y)
∂xk |

)1/m

(175)

which is again in the correct form for using Particle Cells and the Pulling Scheme. We can see the condition
in the previous section is simply the α = 0 case.

9.1 Multiple resolution conditions
Above we have shown that we can formulate the Resolution Bound for a range of (α,m)-Reconstruction
Conditions. What if we want more than one Reconstruction Condition? This case is simply satisfied. If we
consider we have a set of Local Resolution Estimates Li = {Lαi,mi(y)} from i = 1, .., q associated with q
different (m,α)-Reconstruction Conditions (SEq 169), then we get one Resolution Bound of the form,

R(y) ≤ min
x∈N (y,R(y))

(
min
i
Lαi,mi(x)

)
(176)

using the fact that the minimum operation is associative. Hence, any combination of Reconstruction Con-
ditions can be solved finding the Implied Resolution Function R∗(y) using the Pulling Scheme using the
minimum across the different (α,m)-Local Resolution Estimates. Hence, all of the results from the Parti-
cle Cells presented for the m = 1, α = 0 case, directly extend without extra work to the multiple general
(m,α)-Reconstruction Conditions case.

10 Reconstruction Methods
In the above discussions and main text, we have not specified a specific ξp(y). We have only specified the
two conditions any reconstruction must fulfill, specifically,∑

xp∈N (y,R(y))

ξp(y) = 1, (177)

ξp(y) ≥ 0.
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In essence, any average over points within the neighborhood N (y, R(y)) is valid. Here we briefly describe
three different approaches that are used in the following chapters, that produce reconstructions f̂ that satisfy
the Reconstruction Condition. Many other possible approaches exist, including using B-Splines or Wavelets
for reconstruction, however, we stick to the following three simple cases here.

10.0.1 Piecewise constant reconstruction

This first approach, is practically, the most simple and efficient. A piecewise constant reconstruction f̂pc that
satisfies SEq 177 can be constructed as

f̂pc(y) =
∑
ci,l∈V

fpφ(y, ci,l) (178)

where φ(y, ci,l) is defined as in SEq 37. Due to its simple structure, SEq 178 can be very efficiently im-
plemented and has low computational cost. Despite its simplicity, it seems to produces subjectively ’high’
quality reconstructions. Because of these properties, we use it as the default reconstruction throughout the
rest of this work. The draw back of this approach is not a ’smooth’ reconstruction.

10.0.2 Smooth reconstruction

Instead, in the second approach, smooth reconstructions f̂s can be used by utilizing a kernel function ψ(x) ≥
0 in the following way

f̂s(y) =

∑
xp∈N (y,R(y)) fpψ(x− y)∑
xp∈N (y,R(y)) ψ(x− y)

. (179)

Such smooth reconstructions could be useful for visualization purposes, when piecewise constant ’artifacts’
may not be wanted, or for processing applications requiring a smooth representation.

10.0.3 Smooth - seperable linear reconstruction

A further smooth approach includes use of the piecewise construct reconstruction f̂pc. This can then be
filtered consequentially in each direction using an average over each direction seperately with a filter size set
by R(y).

10.0.4 Worst-case reconstruction

For the analysis below, it is useful to be able to create the worst-possible reconstruction that satisfies SEq 177,
so we can show empirically that the Reconstruction Condition holds. If we consider any point y ∈ Ω, let
fmin = minx∈N (y,R(y))(fp) and fmax = maxx∈N (y,R(y))(fp), then any reconstruction satisfying SEq 177
follows

fmin ≤ f̂(y) ≤ fmax (180)

therefore, we define the minimum f̂min and maximum f̂max, worst case reconstructions as

f̂min(y) = min
x∈N (y,R(y))

(fp), (181)

and

f̂max(y) = max
x∈N (y,R(y))

(fp) (182)

which represent upper and lower bounds on any reconstruction.
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Figure 14: Local Resolution Estaimte L(y) (blue) and Implied Resolution Function R∗(y) (green) for the E = 0.05 (right) and
E = 0.3 (left) examples from Figure 16.

11 1D Validation
In this supplimentary section, we verify the theoretical results of the APR using a simple analytic 1D function.
We use the most simple case where the Local Intensity Scale σ(y) is a constant. First, we will briefly describe
the algorithms that were used and then follow with a discussion of various results.

11.1 Implementation
The results in this section were produced using scripts in Matlab. The code takes a function f over a fixed
domain Ω that can be queried at any point y ∈ Ω. Given a user-set relative error E and the input function, the
APR is then be computed.

The Pulling Scheme was implimented using the explicit tree storage method with a full representation of
the Particle Cell set C from lmin to lmax − 1, where Ω

2lmax
represents the smallest distance between sampled

particles. The equivalence optimization SMat 5.4 was used. However, the integral neighborhood optimization
was not used. lmax was set by finding the numerical maximum of the absolute value of the gradient, computed
using central differences, and finding its associated particle cell level using l = max(lmin, blog2( Ω

L(y) )c))
and lmin was set to one. The natural Local Particle Set, Ln was then calculated by iterating over the domain
at a sampling defined by Ω

2lmax
. Ln was created by calculating L(y) and then determining the associated

Particle Cells setting and then setting the values in the C structure to one (For more details see the description
of the 3D pipeline in SMat 13.4).

We tested this pipeline, using a numeric, and symbolic version. In the symbolic version, all the function
and gradient calls were symbolically evaluated. In the second, the numeric version, the function sampled at
a spacing Ω

2lmax
was the input of the function. L(y) was computed either using central differences for the

numerical version. The pulling scheme was then used to calculate Vn and from this V . Lastly, the particle set
P∗ = {fp} was formed by sampling the function. As particle locations do not align with the sampling used
in the previous steps when using the numerical computation, linearly interpolated values were used. Unless
explicitly stated, all results are shown for the numerical version.
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Figure 15: Particle Cell level l, for all ci,l ∈ V for the E = 0.05 (left) and E = 0.3 (right) examples from Figure 16.
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Figure 16: The APR with E = 0.05 (left) and E = 0.3 (right) for f(y) = e
−(x−0.5)2

0.05 − e
−(x+0.3)2

0.001 with σ(y) = 1 on the domain
Ω = [−2, 2]. The observed reconstruction errors (normalized infinity norm) are given inset forE∗pc a piecewise constant reconstruciton,
E∗wc worst case reconstruction, and E∗lin piecewise linear reconstruciton. For E = 0.05, #P∗ = 176, and lmax = 12, for E = 0.3,
#P∗ = 51, and lmax = 9.
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f̂max (light blue) and minimum f̂min (green) worst-case reconstructions (10.0.4) with the original function plotted in transparent blue.
The right plot shows piecewise constant interpolation f̂pc (green) and piecewise linear inteprolation. The original function is plotted in
transparent blue.
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Figure 18: The observed reconstruction errors for the APR and function as in Figure 16 for a linear range of 200 values of relative error
E from 0.001 to 1. In both plots the dotted dark blue line indicates E∗ = E, the representing Reconstruction Condition that the APR
reconstruction should be below. The left plot shows the observed reconstruction errors for worst case E∗wc (blue), piecewise linear E∗lin
(light blue) and piecewise constant E∗pc (green). The right plot shows the worst case reconstruction error E∗wc when the gradient is
computed analytically (green) and numerically using central differences (blue).
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Figure 19: The left plot shows the number of particles (Np = #V) for the APR and function as in Figure 16 for a linear range of 200
values of relative error E from 0.001 to 1. Inset is the same data (blue) on a log-log plot, with two linear fits (green). The first fit is for
E ≤ 0.05, with exponent−0.86 and R-Square: 0.994 and second forE > 0.05 with exponent−0.56 and R-Square: 0.975. The right
plot shows the observed reconstruction error of the gradient computed on the same series of APRs. The observed reconstruction error of
the gradient is the infinity norm of the gradient normalized by the maximum absolute value of the gradient. The dotted line shows the
relative error bound, the light blue shows a first order gradient, and green second order gradient.

11.2 1D example
Here, we explore the APR for a simple 1D function for a function composed of a narrow negative and
broad positive Gaussian function. SFigure 16, shows the APR represented as particles at fp in green, and
a piecewise linear interpolation in blue, for a high relative error E = 0.05 and low relative error E = 0.3
(Function definition in caption). We only use this example here; however, the results are consistent across
general differentiable functions that have been tried. From the two plots, we can see that the particles are
adapting to the different length scales in the problem, having a low density of particles in the flat areas and
resolution increasing near the two peaks. Further, we can see that the impact of increasing the relative error
is an increase in the resolution in the already higher resolution areas. In the inset, we show the observed
reconstruction errors E∗ of the two APRs for a range of different reconstruction methods. We define the
observed reconstruction error E∗ for a set of points x̄ as

E∗ = max
x∈x̄

(
|f̂(x)− f(x)|

σ(x)

)
(183)

where f̂ is the reconstructed value from the APR. A subscript is usually given to indicate which reconstruction
method was used, and x̄ is the set of all points sampled at a spacing of Ω

2lmax
.

For the 1D examples, we use three different constructions. E∗pc is based on a piecewise constant nearest
neighbor reconstruction f̂pc, E∗wc is the worst-case taking the maximum reconstruction error for both f̂min
and f̂max as described in SMat 10.0.4, andE∗lin is from a piecewise linear (between particles) reconstruction.
SFigure 17 shows the reconstructions for the three cases for the APR with E = 0.3. For the case of E = 0.05
the reconstructions, except the worst-case, are indistinguishable by eye from the function. From theory, this
observed reconstruction error should be less than or equal to E for all of these methods.

Returning to the values in SFigure 16, we see that this is the case. As expected, the worst-case reconstruc-
tion has the highest value, followed by the piecewise constant, and then piecewise linear reconstructions.
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Next, we show details of the APR formation, and how the change of resolution between the two relative
error values arises. The increase in E, from 0.3 to 0.05, results in a scaling of the Local Resolution function
L(y), shifting it to a smaller value. The lower values then result in a more constrictive Resolution Bound
resulting then in a smaller Implied Resolution Function. This is shown in SFigure 14 where the Implied
Resolution Function R∗(y) (green) and the Local Resolution Estimate L(y) (blue). However, across these
figures, discerning the changes in resolution in high-resolution areas (small R∗) is difficult. However, this is
easily done instead by directly visualizing the particle cell level l. SFigure 15, shows the changes in resolution
by particle cell level l for the two different relative errors. We note that the particle cell level l for the higher
relative error E = 0.05 seems to be more responsive to the features of the function then E = 0.3.

11.3 Reconstruction Condition
Above we showed that the Reconstruction Condition holds for two values of relative error E. What about the
arbitraryE? To address this, we computed the APR and reconstruction errorsE∗ for 200 values from 0.001 to
1 for the three reconstruction methods. The results are plotted in the left plot in SFigure 18. For small values
of E the reconstruction errors show a linear response to E, and for higher values show a piecewise constant
response. Across all values, the worst-case reconstruction, as predicted, is the highest. Further, although it
comes close to the bound, represented by the dotted line, it never crosses it. These results, therefore, confirm
that the Reconstruction Condition holds across E for our test function.

11.4 Numeric vs. symbolic gradient
The derivation of the APR assumes full knowledge of the gradient of the function ∂f

∂x . In SMat 7.2, we briefly
discussed some theoretical arguments on how errors in the gradient would affect the observed reconstruction
error E∗. To test the impact of this, we compared the worst-case reconstruction error of the APR computed
with exact knowledge of f through symbolic evaluation of ∂f∂x and the numeric version computed from knowl-
edge of f only at samples of distance Ω

2lmax
. All previous results have been with the numeric version. The

result is shown in the right plot of SFigure 18. For small values of E the results appear identical, however,
for a few points at higher E, there are some differences. Indeed, the reconstruction error for the numeric code
is smaller, except at isolated points for E near 1. Arguably, since the bound only requires E be below the
bound, the lower value results from more particles being used, and therefore the higher analytical solution
is ’better’. However, in this example, the difference between the two regarding the number of particles was
small (1-2).

11.5 Number of particles
Intuitively, we should expect that the smallerE, the fewer particles that should be required to form the optimal
solution to the Resolution Bound with Particle Cells, and therefore the number of particles should decrease
with E. This is the case, and is shown in the left plot of SFigure 19. The plot shows both the numeric and
analytic version number of particles against the relative error E. Only one curve can be seen because the
differences are indistinguishable when visualized this way. The plot shows that not only does the number of
particles decrease with E, that it does so in a non-linear way. To explore this, in the inset of SFigure 19 left
we show the same results in a log-log plot. We find what appears to be two different regimes, corresponding
to linear regions in the log-log plot. In the figure, we also show linear fits for these two regions. For small
values of E, the number of particles Np, appears to scale like E−0.86 and for higher values like E−0.56.
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11.6 Gradient
Satisfying the Reconstruction Condition, only guarantees the reconstruction of the function f at a specified
relative error E, and does not bound the derivative. However, the error of the gradient should still scale with
E. We empirically explore the gradients reconstruction error, defined as

E∗grad = max
x∈x̄

 | ∂̂f∂y (x)− ∂f
∂y (x)|

σgrad

 (184)

where we set σgrad to be equal to the maximum absolute value of the gradient across the interval. The
normalization by the maximum absolute value of the gradient is to make the results comparable to the E
bound for f . The results are shown in the right plot of SFigure 19, where the gradient is computed using
both 1st order, and 2nd order in h DC-PSE (5) derivative estimates. We find that in both cases as the error
decreases in E. For the first order derivative, the error is above the bound set by E, however, for the higher
order 2nd derivative, we see that the reconstruction error in the gradient is always below E.

11.7 Discontinuities
Lastly, for the 1D case, we explore the case where f is no longer in C1 and contains discontinuities. We do
this by adding two Heaviside step functions to the previously used example from SFigure 16. The existence of
discontinuities violates the assumptions of the formulation of the APR. However, practically discontinuities
can be handled when using the numerical version, given the introduction of a fixed maximum level lmax
for the initial sampling. We do this by using sampling set by the previous example for the input f{x̄}, but
letting lmax for the APR be determined by the numerical computation of the derivative and L(y). We show
the resulting APR’s for the same relative errors E = 0.05 and E = 0.3 in SFigure 20, with the observed
reconstruction errors again inset. We find that the two piecewise constant reconstruction methods still satisfy
the Reconstruction Condition, but the worst-case method does not. The piecewise reconstruction methods
meeting the bound is the result of only computing E∗ at the sampling points given by x̄, which coincides
with the highest sampling distance in the APR. Therefore, at the high-resolution regions, the reconstruction
is simply the particle values fp for these methods. However, the worst-case reconstruction effectively uses
all points within R∗(y). In this case, the reconstruction fails at the discontinuity. However, the same would
occur for any discrete sampling across the discontinuity using an isotropic kernel with support greater than
one point.

12 2D wavelet comparison

12.1 APR implementation
The APR was implemented in 2D in Matlab following the same procedure described in 1D above. Where the
particle intensities are estimated using all pixels in the Particle Cell.

12.2 Wavelet thresholding implementation
For comparison, we used ddencmp function in Matlab to produce the Haar wavelet transform of images and
performed global, hard thresholding using wdencmp to perform wavelet thresholding. Where we present
benchmarks similar to those produced in for wavelets in (6).
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Figure 20: The APR with E = 0.05 (left) and E = 0.3 (right) for f(y) = e
−(x−0.5)2

0.05 − e
−(x+0.3)2

0.001 + 0.5 ∗ Heaviside(x)− 0.3 ∗
Heaviside(−.5 − x) with σ(y) = 1 on the domain Ω = [−2, 2]. The observed reconstruction errors (normalized infinity norm) are
given inset for E∗pc a piecewise constant reconstruciton, E∗wc worst case reconstruction, and E∗lin piecewise linear reconstruciton. For
E = 0.05, #P∗ = 200, and lmax = 18, for E = 0.3, #P∗ = 57, and lmax = 9.

12.3 Error norm comparison
For both the APR and the Haar wavelet transform the number of coefficients required to represent the image
(in the case of the APR, the number of particles) are decreased by increasing E for the APR and increasing
the threshold used for wavelets.

The analysis was performed on two classic benchmark images (Lena and MIT cameraman shown in
SFigure 22). For each generated wavelet transform of APR, the image was then reconstructed and the L1 and
L2 errors compared to the original image. For the APR, piece-wise constant reconstruction was used.

The results for both images are presented in SFigure 22 in log-log plots. Across images, we see that
the Haar wavelet thresholding provides a more optimal trade-off between the number of coefficients and
reconstruction error measured both in terms of the L1 and L2 norm.

This is expected, as given the same power of two decompositions between the APR and the Haar wavelet
transform, any APR could be represented using a Haar wavelet transform losslessly (with respect to APR
particles), with a number of coefficients that is either equal to, or less than number of particles in the APR.

Further, the wavelet transform and thresholding relies on a fixed basis, or reconstruction function, whereas
the APR can produce an image with guaranteed error bounds with a wide class of isotropic reconstruction
functions across the domain. This flexibility comes at the cost of a larger number of coefficients for a given
reconstruction error.

13 3D Flouresence Image APR Pipeline Implementation
In this supplementary section, we briefly outline how we have implemented the steps for forming the APR
for noisy 3D fluorescent images. We make use of the optimizations for the integral neighborhood sampling
(SMat 5.6) and equivalence optimization (SMat 5.4). For the Pulling Scheme, we use explicit storage of C as
described in SMat 5.5. Note, in this section as we are now dealing with images, we will use I to represent
the original noisy input image, instead of f as previously used.
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LenaCameraman

Figure 21: Classic 512 × 512 benchmark images, Cameraman (512 × 512 left), and Lena (right), used for the optimal error scaling
results in SFigure 22

We have implemented the pipeline in a C++ library utilizing shared memory parallelism across the
pipeline using OpenMP (7). We have favored the use of shared-memory parallelism over the use of GPU
acceleration, due to the current larger availability of larger capacities of RAM when compared to GPU-
memory allowing the processing of larger images on a shared-memory CPU implementation than one relying
on fitting the whole pipeline into GPU memory. However, testing has indicated that the use of hardware
acceleration, such as GPUs or Intel Xeon Phi’s, can provide significant speedups for particular steps.

The main dependencies of the library, besides OpenMP, are for input and output of files. For reading
images we use LibTiff, and for output, and writing the APR, we use HDF5 (8) and the HDF5 plugin for the
BLOSC compression library (9). Also, a Java wrapper has been created using SWIG.

When implementing the APR for 3D LSFM data, three main choices had to be made. First, how to
calculate the gradient magnitude |∇I(y)|, second, what form of Local Intensity Scale σ(y) to use and how to
calculate it, and last, how to sample the image intensity at particle locations Ip = I(yp). A summary of these
steps is shown in SFigure 24. All decisions have been made with the objective of meeting the Representation
Criteria through optimizing both robustness to noise and computational efficiency.

13.1 Pipeline input and memory requirements
All input images used in this paper are read in from 16 bit unsigned int single channel tiff images. The time
taken to load the image is not accounted for in the timing benchmarks in this paper. The pipeline requires
approximately 2 5

8 times the memory of the original image, and the maximum memory size is only restricted
by the available RAM, and the global 64 bit unsigned integer access key.
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Figure 22: The scaling results for the L1 (left) and L2 (right) errors plotted as a log-log plot against the number of non-zero coefficients
in the thresholded Haar wavelet transform and the number of particles in the APR. The results are shown for the Cameraman (top) and
the Lena (bottom) benchmark images. For the APR the thresholds are reduced by increasing E, and for wavelets by increasing the
threshold at which at which coefficients are set to zero. For the APR the piece-wise constant reconstruction was used.
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Figure 23: The schematic shows the idea behind the Local Intensity Scale we use in this paper. The Local Intensity Scale should be
slowly varying and reflect the range of intensities (from highest to lowest) of objects within a set length scale set by the width of the blur
kernel in the image.

13.2 Smoothing B-splines
To be able to estimate function gradients in the presence of noise we fit cubic smoothing B-splines as in-
troduced in (10). This introduces a regularisation smoothing parameter λ that determines how closely the
fit splines must fit the original sample points. We implement these filters using the IIR approach described
in (10), using the impulse response for setting the recursive boundary conditions. A strength of this ap-
proach is that the algorithm is O(1) regarding parameter choice λ, and O(N) in pixels, therefore displaying
consistent computational performance across parameter values.

The output of the B-spline coefficients is used for gradient estimation and the Local Scale Function σ(y).

13.2.1 Gradient magnitude |∇I|

Using the computed smoothing B-spline coefficients, the gradient in each direction is computed using the
finite difference stencil (−1/2hi, 0, 1/2hi). Where hi is the sampling distance in that direction. These are
then squared and combined to form the gradient magnitude as below

|∇I| =

√(
∂I

∂x

)2

+

(
∂I

∂z

)2

+

(
∂I

∂y

)2

. (185)

For noise-free benchmarks, simple finite differences on the original image are performed instead of smoothing
B-Splines. Once calculated, the gradient magnitude is then downsampled by a factor of two in each direction,
taking the maximum value over each patch of 8 pixels. This is done as the Local Resolution Estimate is only
required at this resolution due to the equivalence optimization and to satisfy the smoothness assumption.

13.3 Local Intensity Scale σ(y)
In this paper we desire the Local Intensity Scale to be a smoothly varying function that captures the local
range of the input image over a certain length scale, allowing the adaptation to cope with changes in contrast
across the image domain with varying sources. We set this length scale as a function of the inherent length
scale provided by the optical process through the Point Spread Function (PSF). This length scale is then
used to adjust the size of the windows for the filters in the algorithm. The filter here is effectively a scaled
smoothed estimate of the local standard deviation of the image with filter size adjusted to the estimated
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Figure 24: Flow chart showing APR pipeline for fluorescent images, first smoothing B-splines are fit to the image, then the gradient
magnitude |∇f | and local scale σ(y), is computed. The Local Resolution Estimate L(y) is then computed and used to construct the
input for the Pulling Scheme that then computes the OVPC set V . The particles are then sampled from the original image, forming the
APR. Required parameters are given above the boxes in purple.

standard deviation of a Gaussian approximation to the PSF, PSFw in each direction relative to the sampling
size, and was inspired by (11). In practice, the PSF is usually anisotropic in the z direction, this can be
accounted for by an additional scaling parameter, but we do not explore this here. This parameter PSFw
in terms of pixels must be given by the user as input. As discussed below, we find the results relatively
insensitive to the exact value of PSFw. In an effort to satisfy the smoothness assumption (SMat 4.4) and
given the Local Resolution Estimate L(y) is calculated at spatial points downsampled by two, we directly
calculate it on a downsampled by two smoothed B-spline image.

The first step of the Local Scale Function is two calculate

σ(y)∗ = A0µ2(|I2(y)− µ1(I2(y))|) (186)

where A0 is a scaling constant set by the filter window sizes, µ1 and µ2 represents box, or mean, filterers on
the image with window sizes w1 and w2 respectively, and I2(y), is the smooth B-spline image downsampled
by a factor of 2 in each direction using averaging. The box filter window sizes w in each direction and scaling
factor has been empirically to minimize the under-resolution to V ideal from the ”perfect” APR discussed in
SMat 15.5 and set for integer values of the s = {1, 2, 3, 4, 5, 6} in terms of pixels as

w1 = {1, 1, 1, 2, 2, 3} (187)
w2 = {2, 3, 4, 4, 5, 6} (188)

where non-integer values are rounded to the nearest value. The constant normalisation factor A0 is required
to normalize the estimate to that of the local intensities, and set empirically against the implied ”ideal” σideal

for the calculated σ∗ (again see SMat 15.5) in Particle Cells at l = lmax for each filter size combination as

A0 = {25.15, 37.70, 60.82, 30.24, 35.35, 20.47}. (189)

The result is thresholded in the following way

σ(y) =

{
max(σ∗(y)), σth) σ∗(y) > σth

2
64000 otherwise (190)

where σth, is set to the scale of the smallest content in the image that is wanted to be captured, e.g. the
difference between the foreground and background of the dimmest object in the image. Otherwise, for noisy
flat regions, as in image background, σ → 0, resulting in the noise being captured (SFigure 25).
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Implied Resolution Function - No Scale Threshold Octopus Object  Template

Figure 25: The Resolution Function R∗(y) for the same image shown in Figure 3E, without the use of any thresholds for local scale
estimation (σth = 0). The color scale is identical to that shown in Figure 3E. In the absence of a threshold, the Local Intensity Scale
tends to zero in the background areas, and therefore fully resolves the background noise. This is mitigated by using a minimum local
scale threshold σth. The original data is from exemplar data set 10 in Table 3. The second pane shows a volume rendering used for the
octopus template used to generate the object function for synthetic images in SFigure 29

The box filters, are performed in a separable manner, in each direction using summed area tables (12),
also known as integral images, to allow box filters computationally O(1) with respect to the window size.

For real exemplar data SMat 17.2, an intensity threshold was also included, to allow the exclusion of
unwanted dim image content in the background of the image or image camera defects. At this step any
additional information, or filters, could be used to determine which part of the image wish to be captured, this
could include information from different channels in an image, or from, different time-steps, such additions
are use-case specific, but could yield a significant reduction in particle numbers.

13.4 Local Resolution Estimate L(y) and Local Particle Set L
The gradient magnitude |∇I| and Local Scale Function σ(y) are combined to create the Local Resolution
Estimate L(y) = Eσ(y)

|∇I| and then the Local Particle Cell set Ln. When using the equivalence optimization
SMat 5.4, L(y) is only required at locations that align with a down-sampled by two image (the maximum of
the gradient is used over the patch at the original resolution).

The first steps requires setting the relation between the Particle Cells and the image domain. Given an
image with N pixels, and image dimensions Nx,Ny and Nz , such that N = Nx ∗Ny ∗Nz , with maximum
dimension Nmax, and minimum dimension Nmin. We can then set the minimum and maximum levels l for
the APR as lmax = ceil(log2Nmax) and lmin = max(2, lmax − blog2Nminc), and then our augmented
domain length |Ω∗| = 2lmaxhmin, set such that the maximum resolution coincides with the original pixel
sampling.

Then for each downsampled pixel value we calculate, the level l, of the Particle Cell ci,l it belongs to as

l = max(lmin, blog2(
|Ω∗|
L(y)

)c)) (191)

The spatial co-ordinates i of the particle can be calculated as i = {bx 2l

|Ω∗|c, by
2l

|Ω∗|c, bz
2l

|Ω∗|c}. We wish to
find all the unique ci,l that then form L.
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Instead of directly computing the coordinates, we make use of the relationship between the levels of the
tree structure and parent-child Particle Cell relationships. Each full level l of the Particle Cells corresponds
to a down-sampled version of the full image a fixed number of times, forming a classic image pyramid. To
calculate Ln the image containing l for each downsampled pixel is downsampled to lmin using the max
operation. For all values where the level in the structure, coincides with the down-sampled level the Particle
Cell is added to Ln where the coordinates in the downsampled image x, y, z also coincide with the Particle
Cell spatial coordinates and with l define a unique Particle Cell c{xl,yl,zl},l. Although this down-sampling
results in missing ci,l that have higher level children in Ln however we know these Particle Cells do not
impact V from the redundancy property (SMat 5.3). Because the implimentation we use here also uses the
same pyramid structure, instead of outputting the set Ln, we simply set all values for which l is the current
level of the pyramid to 1 and all other 0 and use this as input to the Pulling Scheme. This algorithm allows
the construction of this reduced Ln in O(N).

13.5 Pulling Scheme V
Given the Local Particle Cell set, Ln stored in an image pyramid with non-zeros indicated the present Particle
Cells calculated from the previous step, we then run the Pulling Scheme using the full explicit storage of the
Particle Cell tree as described in SMat 5.5 using SAlgorithm 1. Practically, this is achieved by (lmax − 1 −
lmin) unsigned 8 bit arrays of the the size 23l (See SMat 5.7 for the memory cost in terms of N .).

The output of the algorithm is also stored in an image pyramid structure, with non-zero values aligning
with SEED, FILLER, and BOUNDARY values representing the Particle Cells in Vn.

Now that the valid Particle Cell set, Vn, is calculated we then choose our particle sampling. This is done,
as described in SMat 5.6, where Particle Cells of type boundary and filler, have one particle placed in the
center, and Particle Cells of type seed, are split into 8, higher resolution Particle Cells with one particle again
at the center of each. The highest resolution particles coincide with the original image sampling, resulting in
the construction of the particle sampling P∗.

13.6 Intensity estimation Ip
Any method of estimation of the particle intensities Ip = I(xp), could be utilized at this step. In the case of
noise-free images, the closest, or interpolated pixel value is used. However, in the presence of noise, the use
of information from V , to improve the estimate of the intensity using an area of the original image would be
more appropriate with Ip = Î(xp), where Î is some de-noised image. Here, given each particle is sampled
at the center of the particle cell, we simply take the average of the intensity over all pixels within the Particle
Cell. In the case of particles at the image resolution, this average would simply be the original pixel.

13.7 Reconstruction methods
For the comparison of the APR with images, a reconstruction method must be used. In SMat 10 we dis-
cussed the reconstruction methods used in this section. Unless otherwise explicitly mentioned, it should be
assumed that the piecewise constant reconstruction method (SMat 10.0.1) is used. This was chosen for its
computational efficiency, simplicity, and effectiveness.

13.8 Pipeline parameters
A summary of the algorithmic steps required to form the APR from an input image I{ȳ} are shown in
SFigure 24. The parameters that must be set are shown in purple. These are the smoothing parameter λ
for gradient estimation, the threshold parameters for the Local Intensity Scale σTH , the point speed function
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width (standard deviation of guassian approximation) PSFw, and the desired relative error E. A detailed
discussion of all parameters, their interpretation, and how they have been and can be, set is given in SMat 14
below. For all of the benchmarks the parameters that have been used are described in SMat 16.1.

In this paper, we have discussed and implemented one particular implementation of a pipeline for the
APR optimised for large 3D images originally stored as tiffs. We have attempted to optimise the steps
to reduce memory overhead and computation time, and to reduce the number of parameters and library
dependencies. However, with the exception of requiring an estimation of L(y), and an implementation of
a pulling scheme, we imagine the possibility of use of vastly different algorithms, implementations and
definitions of the estimation of the local scale function, gradient magnitude, and particle intensity.

14 Pipeline parameter Summary
The required parameters for the APR pipeline presented here can be grouped into two categories, those that
reflect information on the properties of the original image, and those that impact how and what the APR
represents in the image.

14.1 Image parameters
The main parameters is the standard deviation of a Gaussian approximation to the point spread function (PSF)
in each direction in pixels, PSFw. This value is used to set the width of window functions used in calculating
the Local Intensity Scale. We find the results are relatively insensitive to the exact value, and for Exemplar
data, have used a fixed width of 2 pixels.

14.2 Reconstruction parameters
These parameters impact how the APR is formed from the underlying image and includes the relative error
bound E, the gradient smoothing parameter λ, and the minimum local scale threshold σth.

14.2.1 Relative error E

The relative error bound E, determines the allowed distance between the original image, and the APR repre-
sentation. From noisy synthetic data a value in the range of 0.08−0.15 seems optimal in terms of PSNR for a
range of noise levels that coincide to typical fluorescence imaging. We have found this reflected in qualitative
experience with real data-sets as found in the exemplar data sets. Further, we found that for highly anisotrop-
ically sampled datasets, a value in the lower range of 0.08− .1 was usually appropriate, likely compensating
for the resolution loss in one direction, where as for more isotropic data sets, higher values in the range of
0.1− 0.15 seemed optimal. However, in all cases, the results are insensitive to the exact value.

14.2.2 Smoothing parameter λ

The gradient smoothing parameter λ controls the how much smoothing is done in the fitting of B-splines
for local resolution function estimation. With a higher value resulting in greater smoothing. This smoothing
is required due to the amplification of noise properties of standard gradient operators in the presence of
noise (10). The absence of this smoothing would result in erroneous high-gradients and over-sampling. How
to set this parameter depends on the signal to noise ratio of the original image. With values ranging from 0.5 to
4, seemingly optimal over standard signal to noise ranges, with lower values for higher signal to noise ratios.
Again, results are not especially sensitive to this result, with a value too low, resulting in over-sampling and
likely fitting of noise, and a value set too high, resulting in the APR not adapting to the fine grain structure.
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14.2.3 Local Intensity Scale threshold σth

Lastly, the minimum Local Intensity Scale threshold σth represents the minimum local scale that will be
allowed across the image domain. This is required due to the behavior of the Local Intensity Scale σ(y). In
flat regions, the response tends towards the average noise range. Hence, given the gradient will be non-zero
in these regions it will result in the fitting of the noise by the APR, due to the normalization of the small
gradients as shown in the first pane of Figure 25. σth is introduced to curb this effect. To reduce the impact of
noise, the smoothed B-spline image is used as input to the local-scale function rather than the original. This
results in a reduced response of flat background areas in the Local Intensity Scale, allowing for the threshold
to still function at low signal to noise ratios. Further to a minimum bound, values at half this value are then
set to a maximum response. This is in effect to drive the L(y) to large values and result in the APR ignoring
these regions.

Setting this value is therefore subjective, and image dependent, as real-images often contain dim signals
from sample contamination or auto-fluorescence, that may or may not wish to be captured. Corresponding
to b in our image formation model (194). If the faintest objects that wish to be captured can be identified in
the image, the value can simply be set to the local range between background and foreground for this object.
Unlike the other parameters, the setting of this parameter too high can result in significant changes in the
properties of the APR, due to it resulting in signal effectively being ignored. Therefore, a conservative under-
estimate is suggested. For the exemplar benchmarks, this was set by simple visual inspection of the original
image. Alternatively, given assumptions on the minimum signal to noise ratio, this value can be estimated
using an estimate of the background noise level. We found setting the value to 6 times the average back-
ground noise level is effective across the Exemplar datasets. However, this can still result in the inclusion of
auto-fluorescence or background content, that may wish to be removed by manual selection of the parameter.

An image intensity threshold can also be used, where the gradient is set to zero where the intensity is
below some level Ith. This was not used in the benchmark data but has proved useful when dealing with
real data, for removing unwanted background signal. Similarly, additional information can be included in the
APR formation, most simply this can be done using a binary mask. Providing a simple means for inclusion
of information from other channels, prior knowledge, or extra image processing steps.

15 3D synthetic data
To test the properties of the APR for 3D Lightsheet Flouresence Microscope (LSFM) data we use syntheti-
cally generated image data. We generate synthetic images following a Object function and image formation
model we describe below. Synthetic data is used as it allows us to control image parameters, such as image
size, content, and noise level in addition to full knowledge of the noise-free, ground-truth image and Object
function. We provide an overview and some technical details below.

15.1 Object function
Here we model LSFM data as a set of labeled objects, e.g. cell nuclei, distributed in space that are the input
to an image formation process that produces images. We define our Object function (ignoring time) defined
on Ω ⊂ R3 with M objects as

O(x, y, z) =

M∑
i=1

Oi(x, y, z) (192)
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where each object is a function of compact support Oi(x, y, z) and the function is set to zero outside of Ω for
simplicity. Further, we allow object is composed as

Oi(x, y, z) = BiO
∗(x− xi, y − yi, z − zi) (193)

where O∗(x, y, z) is a piecewise constant function of compact support, that we call the template object, and
Bi is a constant we call the brightness of object i. In all but one case, the template object used below is a
sphere of varying size.

15.2 Image formation
Given a particular Object funtion, we form an image I{y}, approximating the image formation process. The
first step involves the simplified version of the image formation process (13) and discrete approximation of

I∗(x, y, z) =

∫∫∫
Ω

(O(u, v, w)+

b)PSF (x− u, y − v, z − w)dudvdw

(194)

where b represents the background intensity is set to be a constant and PSF as set as a non-spatially vary-
ing Gaussian with a standard deviation in each direction of PSFw. For efficiency, the convolution is only
done once over the template object, allowing a high sampling approximation to the Object function, without
explicitly storing it. The ground truth image is then formed by integrating over the pixel (voxel) volume
(hx, hz, hy) to create the pixel intensity for each location as

Igt{x, y, z} =

∫ x+hx/2

x−hx/2

∫ y+hy/2

y−hy/2

∫ z+hz/2

z−hz/2
I∗(u, v, w)dudvdw (195)

for fixed locations ȳ, the spacing of pixels and pixel volumes does not need to be the same (isotropic). How-
ever, this is the case for the benchmarks here. Note, we have also integrated of z dimension as a simplification.
Again a discrete approximation to the integral is used. The last step involves the corruption of the image by
noise as

I{x, y, z} = Igt{x, y, z}+ η(x, y, z, Igt{x, y, z}) (196)

where η(x, y, z, Igt{x, y, z}) ∼ N (Igt{x, y, z}, Igt{x, y, z}) a Gaussians noise with mean and variance
equal to the intensity of the pixel as an approximation to Poisson noise (14). In fluorescence imaging, the
image can be corrupted by multiple different noise sources with different properties including components
that have spatial structure (15). However, here we only consider the case of Poisson, or shot, noise arising
from statistical quantum fluctuations by using a Gaussian approximation. The image I{x, y, z} at locataions
ŷ we denote as I{ŷ}, it is this image that is transformed into the APR.

15.3 Step Summary
SFigure 26 provides an example of 2D slices of the steps in the synthetic image generation pipeline. Through-
out the benchmarks below, we alter the synthetic images regarding image size, information content, quality,
and sampling. We will briefly describe how this is done for each, relating to the parameters mentioned above.
Figure 3C, provides examples of what the original image of a fixed sphere template looks like under different
conditions.
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Object Function Ground Truth Image Original (Noisy) Image APR Reconstructed Image

O (y)

O (y) I gt {y} I {y} tI {y}

Figure 26: Flow chart showing the generation of synthetic images used for benchmarking the APR. First template objects are generated
of a certain size, given locations (xi, yi, zi) , and brightness Bi, to define the Object function O(y) (left). The Object function is then
blurred through convolution with a Gaussian kernel PSF , and then sampled to produce the Ground Truth Image Igt{y} (center left).
This ground truth image is then corrupted by a Gaussian approximation to Poisson Noise η, to generate the Original Image I{y} (center
right). This original image is then transformed into an APR. The APR can be then used to produce a reconstructed image Î{y} that can
be compared with both the original and ground truth image for benchmarking.

15.3.1 Image size

The image size can be changed by setting the appropriate size of the domain Ω, pixel locations y and pixel
size hx, hy, hz .

15.3.2 Information content

Given our Object function model of the image, we can define the level of information content to be propor-
tional to the number of objects M in the image. Therefore, we can scale the image content for a given size
image and sampling, by increasing the number of objects M . The objects are given random locations uni-
formly distributed across the domain and often have a random uniform distribution of brightness Bi, within
the range Bmin and Bmax. An example is shown in the right image in Figure 4F.

15.3.3 Image blur

We alter the degree of image blur and its shape using the width of the Gaussian kernel and its standard
deviation parameters PSFw. Here, we show results for three levels of blur; we call small, medium, and large
blur. They correspond to a standard deviation in terms of pixels of 1, 3, and 6 respectively. Figure 4C in the
left most column provides an example of how these blur kernels impact the same template.

15.3.4 Image noise level

Here we consider either noise-free, that is η is set to zero, or the noisy case using a Poisson noise approxi-
mation. The image quality can be then altered, by changing the relative magnitude of the η compared to the
object brightnesses Bi. The mean of η within any object i can be approximated by a combination of b+Bi.
Therefore, we can increase or decrease the image quality by increasing or decreasing the ratio of Bi

Bi+b
. This

is done by keeping a fixed average object brightness Bi and then changing the background b. Hence, we are
altering the average Peak Signal to Noise Ratio (PSNR) of the image. We show results here for three levels
of image quality we call low, medium and high noise level. Figure 4C, third column gives examples for these
levels of image noise.
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15.3.5 Sampling

Lastly, the degree of sampling can be changed. This involves decreasing the pixel size hx, hy, hz and sam-
pling y while keeping all other variables fixed in real variables. Practically, this means the blur width PSFw
defined in pixels has to be appropriately increased. The increase in sampling can be thought of as zooming
in on the object, as with a camera lens.

15.4 Implementation Details
The synthetic image generation pipeline is implemented separately in a C++ library we have named SynIm-
ageGen, this code available from the authors and uses the ArrayFire (16) Library for GPU acceleration for
generating the images. The use of the GPU limits the size of generated images to GPU memory, only allow-
ing images up to 10003 to be generated. In fact, the generation of synthetic images usually accounted for
the largest component of benchmarking. The pipeline is designed such that the parameters describing each
synthetic image are sufficient to recreate any of the images in the pipeline. Below we will describe additional
technical details of the synthetic image generation for producing the different image steps in SFigure 26.

15.4.1 Template image

The template images used here, are piecewise constant images, with objects of various intensity, size, and
location placed within a fixed 3D image size. The process begins with the generation of a binary object tem-
plate. This template is then used for multiple instances of the same object within the image domain. Objects
templates can be generated by simple algorithms as is the case with the used sphere template. Alternatively,
templates can be generated by a binarization of 3D polygon model files (vrml, obj) using binvox (17, 18).
This is the case with the more complicated octopus benchmark shown in SFigure 25 and used for results
shown in SFigure 29 which was downloaded from (19). However, as mentioned, for all other benchmarks
provided here the generated sphere was used here due to its computational efficiency, and simplicity.

Objects were placed using a uniform random distribution within the volume, as not to overlap with the
boundary, this is to reduce the impact of choice of boundary conditions for the pipeline on the results. Object
intensities were set again with a uniform random distribution with a minimum and maximum intensity value
set.

15.4.2 Ground truth image

The ground truth image is then generated by convolving the image with a blur kernel and adding a fixed
background intensity. The convolution was done using separable filtering using 1D Gaussians of set sigma
PSFw in each direction. This blurred image, then served as the ground truth, as it represents the fluoresce
distribution that we wish would observe if it was not corrupted by noise.

15.4.3 Original (noisy) image

The last step of the synthetic pipeline is the corruption of the image by noise. For each pixel, the following
noise process is used and drawn from

Î(y) ∼ N(I(y), I(y)) (197)

where N(I(y), I(y)) is the normal distribution with mean and variance equal to the image intensity.
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Original Piece-wise Constant Reconstruction Smooth Reconstruction

Figure 27: Comparison between original image (left) and APR piece-wise constant Reconstruction (middle)and APR smooth reconstruc-
tion (right). The smooth reconstruction is using all points within the integral interaction neighbourhood /n and normalized Guassian
weighting based on distance. Source: (Dataset number 10 STable 1)

15.5 Perfect APR and ideal Local Intensity Scale
Given the proposed Local Intensity Scale σ, for our implementation is only heuristically motivated. It is of
interest, therefore what the ideal Local Intensity Scale σideal would be. Using σideal, we could then test the
appropriateness and performance of our choice. Although we have no closed form of the ideal Local Intensity
Scale, we can instead use synthetic data to numerical compute a perfect APR and infer the σideal from this.
This perfect APR is constructed for a given synthetic image by generating an identical image with no-noise
and with all objects of the same object brightness, i.e. Bi = 1 (see SEq 193) and calculating its gradient
magnitude |∇I|normalized. Then σideal is defined as,

σideal(y) =

{
|∇I(y)|

|∇I(y)|normalized |∇I(y)|normalized ≥ .001

64000 otherwise
(198)

where |∇I| is the gradient magnitude of the noise-free image. The perfect APR can then be constructed using
|∇I| and σideal for the calculation of the ”ideal” OVPC V ideal and hence R∗ideal(y). Sampling of intensities
can then be done from the original noisy image to isolate the impact of any errors in adaptation.

16 Validation Benchmarks
In this section, we give details of the synthetic benchmarks used to evaluate the properties of the APR with the
results presented in the Validation section in the main text. For each data point in the benchmarks, a synthetic
image is generated and used as input to produce an APR that is then reconstructed using the appropriate
method (usually piecewise constant reconstruction) and summary and image statistics are calculated. This
analysis is then saved in an HDF5 file that is then read, analyzed and plotted using Matlab. All scripts and
data for the production of the plots in this paper are available on request. Further, to aid reproducibility, each
file contains the git hash for the code commit used to produce the results (for the APR library), the command
line input parameters, and an exhaustive list of parameters used to generate the analysis. The parameters for
the synthetic image generation are either as stated explicitly below, or as outlined in 14.

16.1 Benchmark parameter selection
See 14 for a detailed discussion of parameters, and their use. For the synthetic datasets, all image parameters
are taken as known from the image generation process including the blur sizes. For the reconstruction,
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APR Reconstructed

Figure 28: Piecewise constant reconstructed APR shown in Figure 3E, with contrast adjusted to show the lossy nature of the APR in the
background regions. (Dataset number 10 STable 1)

parameters are set in the as described below, unless explicitly varied as a parameter for the benchmark.

16.1.1 Relative error bound E

Default parameter set to E = 0.1, unless otherwise stated.

16.1.2 Minimum Local Intensity Scale threshold σth

Set to the minimum bound for the random distribution of template intensities. This is a limitation of the
results here and objectively should be set instead by an automated method. However, there is a large range of
values over which the results are insensitive for this parameter.

Gradient smoothing parameter λ To set this parameter in an automated fashion, we utilized the fact that
we knew the minimum standard deviation of the noise σnoise of the benchmark image, being the

√
Ib, where

Ib is the constant background intensity. We then ran parameter searches across different noise levels σnoise,
and parameter values λ, to find the minimum λ required to be still able to get three levels of resolution change
with an object with brightness above the background set at the minimum local scale threshold σth. We then
used the symbolic curve fitting toolbox Eureqa (20) to fit the value λ given the input variables give us

λ = (
σth
σnoise

0.498763)
−1

0.6161 (199)

which was used in the synthetic benchmarks, providing good results in both low and high PSNR benchmarks.
In all cases with error bars have been given, they reflect the estimate of the standard error.

16.2 Noise-free image Reconstruction Condition
Parameter values for results presented in Figure 3. Images of fixed size and number of objects are generated,
and the required relative error bound E is varied. The Reconstruction Condition requires that the observed
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reconstruction error E∗ is below E for all locations. Where the observed reconstruction error is defined as in
SEq 183.

16.2.1 Parameters

An image size of 1283 was used with five sphere templates randomly placed in the domain with brightness
Bi varying uniformly between 500 and 5000 with a background intensity b = 1000. The blur kernels used
have standard deviations of PSFw = {1, 3, 6}, in pixels, corresponding to the low, medium and high blur,
with isotropic sampling as hx = hz = hy = 0.1. The minimum local scale threshold σth = 500. Due to
the lack of noise, finite differences were used to approximate derivatives instead of smoothing B-splines. The
relative error boundE, was run in two linear sections with 40 samples, from 0.001−0.1, then from 0.1−1.0,
with 40 repeats for each relative error bound.

16.3 Noisy image Reconstruction Condition
The same benchmark as above was repeated but with the introduction of Poisson noise with results shown in
SFigure 30.

16.3.1 Parameters

The image parameters and settings were set as in the no-noise case above.

16.3.2 Image statistics

The average observed relative error for the noisy image was constructed by taking the average of the infinity
norms of the individual original images.

Also in SFigure 30 data was presented for the image quality, measured by the Peak Signal to Noise Ratio
(PSNR) and how it, varies with E, for noisy images. We do this for original images with different initial
image quality (PSNR), by varying the signal to noise ratio. Further, on the right axis, a comparison between
the reconstruction error from the APR, and the noise level in the original image is given as measured by the
Mean Squared Error (MSE).

16.3.3 Parameters

Different noise level images were created by fixing the background intensity Ib = 1000, and varying the
brightness of the sphere templates, giving an estimated SNR of σnoiseIobj

, where Iobj , is the intensity of the orig-
inal object template. Due to the Poisson noise corruption, the effective standard deviation of the noise level
will be at-least σnoise =

√
Ib =

√
1000. Therefore, we run the benchmark with 3 different object intensities

Iobj =
√

1000, 10
√

1000, 30
√

1000, corresponding to the high, medium low noise images respectively.
An image size of 1283, was used with 5 sphere templates randomly placed in the domain, with intensities

and background set as discussed above. The medium blur kernel (PSFw = 3) was used and isotropic
sampling with hx = hz = hy = 0.1. The minimum local scale threshold σth, was set to the object intensity
set for the original image. The relative error bound E, was run in two linear sections with 40 samples, from
0.001− 0.1, then from 0.1− 0.4, with 10 repeats for each relative error bound.

16.3.4 Particle Intensity Estimation

In the benchmark, we compare two different methods of estimation of the particle intensities from the noisy
input. In both cases, for Particle Cells with a larger resolution then pixel resolution an average of particles
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in the spatial domain of the Particle Cell is used. For those Particle Cells at pixel resolution in SFigure 30,
we compare results for using the original pixel value or instead using a median filtered value. For all other
results in this section, we use a median filtered value.

Also, in the second plot of SFigure 30, we also compare the results for the APR where the Particle Cells
are computed from the noisy input, but the particle intensity values are computed from a noise-free image.

16.3.5 Image statistics

To measure image quality we use both the Peak Signal to Noise Ratio (PSNR), calculated as

PSNR = 10 log10(
64000

MSE
) (200)

where MSE is the mean squared error and is calculated as

MSE =
1

N∗

∑
y∈Ω̂

(I∗(y)− Ī(y))2 (201)

where I∗ is the ground truth image, Ī is the image being compared (either the original image, or reconstructed
image).

16.4 Increasing information content
In this benchmark we assess how well the APR is adapting to the image content. This is done by increasing
the number of objects in the image and comparing both the image quality and the number of particles, with
results given for the same low, medium, high levels of image quality as for the reconstruction image quality
benchmark.

16.4.1 Parameters

The number of sphere templates randomly placed in the image was increased from 1−100 in steps of 4, with
5 repetitions.

An image size of 3003, was used, with a blur kernel between the low and medium used (PSFw = 2) and
isotropic sampling with hx = hz = hy = 0.1. With the object intensity and background set as for the noisy
image reconstruction benchmark. The relative reconstruction error was set to E = 0.1.

16.4.2 Image statistics

The ratio of the PSNR for the APR reconstructed image, PSNR(APR), and the PSNR for the original image
PSNR(Original) is given, showing the relative image quality of the reconstruction to the original image.
Computed as described for the reconstruction image quality benchmark.

To measure image quality we use the PSNR∗, calculated as

PSNR∗ = 10 log10(
64000

MSE∗
) (202)

where MSE∗ is the mean squared error and is calculated as

MSE∗ =
1

N∗

∑
y∈Ω̂

(I∗(y)− Ī(y))2 (203)
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Figure 29: The first plot shows the medium level of blur benchmark, now showing the observed reconstruction error for three different
reconstruction methods. The worst-case (green), piecewise constant (purple) and smooth reconstruction (blue) methods (See SMat 10).
Each cross represents an individual APR and Image comparison. The second plot is a repetition of noise-free benchmark in Figure 3
with octopus template image (see SFigure 25) used instead of the sphere template for the Object function.

where I∗ is the ground truth image, Ī is the image being compared (either the original image, or reconstructed
image), and Ω̂ is the those pixels in the domain for which the local scale function is less then 60000. This
effectively excludes the calculation of statistics of background areas in the image due to the action of the
minimum local scale threshold σth.

16.5 Increasing image size
In this evaluation benchmark we assess the impact of the original image size, by holding the number of
objects fixed, and increasing the image dimensions.

16.5.1 Parameters

The benchmark was run at three different levels of information content, using 10, 50 and 200 sphere objects
placed randomly within the image domain. For each level of information, the image size was increased from
503 to 10003 in steps of 50, with 5 repetitions.

A blur kernel with PSFw = 2 was used and isotropic sampling with hx = hz = hy = 0.1. The template
intensity and σth were set as described from the medium PSNR original image.

16.6 Increase sampling
In this benchmark with results shown in SFigure 31, the sphere template object was held constant and in a
fixed position in the center of the image. The sampling resolution was then increased while keeping all other
variables fixed in real terms. Relative error was set to E = 0.12, and the PSFw = 10.75. The sampling hi
ranged from a minimum of 0.027 to a maximum value of 0.3583 that corresponded to 200 different image
sizes ranging from 503 to 6503. The smoothing parameter λ = 20

(
hi
50

)2
was heuristically set.
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Figure 30: The first plot shows the observed reconstruction error E∗ for piecewise constant reconstruction for a noisy image when for
particles at pixel resolution the original noisy pixel values are used (blue) or a median filtered pixel value in purple (Medium image noise
and blur). The dashed lines show the mean observed reconstruction error E∗ of the original image (blue) and median filtered image
(purple). The Reconstruction Condition E = E∗ given by dark blue dotted line. The second plot compares the E∗, for the piece-wise
constant reconstruction in the first plot (blue line) with particle values computed from noisy pixel values, with E∗ of the same APR’s
computed from the same particles, with the intensities instead estimated from noise-free pixel values (purple). The third plot shows the
ratio of the PSNR of the APR for piece-wise constant interpolation (median filtered pixels used) and the PSNR of the original image
against increasing set Relative Error Bound E for a medium image noise level and changing blur.
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Figure 31: The two plots show the number particles Np, and PSNR of the APR for an image with fixed image content and blur size, but
increased sampling, and hence width W . The benchmark is equivalent to choosing the resolution of a natural image for a fixed scene.
(See SMat 16.6 for parameters)

16.7 Evaluate Local Intensity Scale
To explore the limitations of the Local Intensity Scale σ used in our 3D pipeline, we use the perfect APR
as defined in SMat 15.5. For each benchmark the APR can then be generated using the pipeline, and then
compared to the perfect APR, which is calculated using exact knowledge of both the gradients and proposed
ground truth Local Intensity Scale σideal. The perfect APR approach provides the ideal OVPC set V , but then
samples particles from the noisy original image. Therefore, we can then evaluate how well the used σ per-
forms in different scenarios. Further reconstructions from the perfect APR, give a limit on the reconstruction
accuracy under perfect adaptation.

The results are shown in STable 1 and STable 2. In STable 2, the results are shown for differing number
of objects and image noise level. Whereas STable 2, shows a fixed number of objects (20), with changing
image noise level and blur.

16.7.1 Parameters

For the benchmark image size of 803 was used with three different levels of objects {1, 10, 20} (sphere with
size = 20 pixels), and low, medium, and high image noise and blur set as in benchmarks above (SMat 16.2
& SMat 16.3). Each set of parameters was repeated 10 times and the results presented are the arithmetic
mean. The Relative Error was set to E = 0.1. Each objects brightness Bi varied randomly over an order of
magnitude.

16.7.2 Statistics summary

For each image, the perfect APR, and APR are calculated, both sampling from noisy intensities. For each
image, the ratio of the number of particles (Particle Cells) in the two representations is calculated Np

Nperefectp
.

Where Np is the number of particles in the normal APR, and Nperfect
p the perfect APR.

To evaluate reconstruction accuracy, the ratio of the PSNR of different image reconstructions from the
APR where compared to the PSNR of the original noisy input image (where PSNR has been calculated as
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defined in SMat 16.3). PSNR(Ipc)
PSNR(Ioriginal)

is the PSNR of the piecewise constant reconstructed APR image

(SMat 10.0.1) divided by the PSNR of the original normal image.
PSNR(Iperfectpc )

PSNR(Ioriginal)
instead is the ratio of

the PSNR of the piecewise constant reconstructed perfect APR image divided by the PSNR of the original
normal image. PSNR(Ismooth)

PSNR(Ioriginal)
is the PSNR of the linear smooth reconstructed APR image (SMat 10.0.3)

divided by the PSNR of the original normal image. E∗pc represents the observed reconstruction error for the
APR using piecewise constant reconstruction.

Given the two different OVPC sets Videal and V we can compare the difference in particle cell resolution
between the two. δ+ and δ− represent the ratio of Particle Cells in V that are of higher (+), or lower (-), level
then the ideal case. That is by how much in different regions is the APR over, or under, resolving the image.
Lastly, σ

σideal
gives the mean ratio of the calculated σ and the ground truth ideal σideal calculated over the

Particle Cells at the highest level (lmax)

16.7.3 Result summary

A small image size was chosen (803), as at 20 objects, the confinement results in ’effective’ objects that
can have brightness levels that vary from ≈ 1000 to ≈ 60000, almost two orders of magnitude. This is the
result of objects being placed randomly and in smaller domains over-lapping between objects being common.
(Beyond this level of objects the observed intensities consistently were above 64000, hence not being outside
the scope of our u16bit pipeline used here).

In STable 1 we find that across image noise level and the number of objects the reconstruction quality
using the piecewise constant reconstruction of the APR is greater than the original image, except for low
noise images with 20 objects. In contrast, for the perfect APR, it is always higher. However, for the APR
using the piece-wise linear, smooth reconstruction we find the PSNR is again always higher. Regarding the
number of particles, we find that for high noise images the APR uses more particles on average, whereas
for medium and low noise images this depends on the number of objects. This coincides, with the values
of δ+ and δ− indicating that for lower quality images the APR is over-resolving the image and for the 20
objects of medium and low noise level under-resolving. Therefore, it seems the APR is performing well, with
exceptions of the 20 object case.

To further explore the behavior in STable 2 we show additional results for the 20 object case showing the
impact of the level of image blur. Here we can see that the performance is impacted by the level of image
blur. With the medium and high blur scenarios resulting in the under-resolution of the solution. Interestingly,
we find that in this case where the reconstruction quality is lower, the Reconstruction Condition, reflected by
E∗ has been met, as all values are below 0.1. This indicates that it is the Local Intensity Scale that is likely
the cause of the reduction in quality when compared to the perfect reconstruction. This is further backed up
by the comparison of ideal Local Intensity Scale given by σ

σideal
, being high in situations across all cases of

20 objects, and worst for high blur images. We note that in the high noise images, the errors occurred by any
under-sampling are within the noise-level and therefore to not largely impact the results. It is only in the high
image quality regime, where the errors in under-resolution result in a loss in image quality when measured
by PSNR using piecewise construction.

In conclusion, these results indicate that the simple σ used here, although effective in many cases, is
in-effective in crowded environments with large intensity fluctuations. Therefore, more sophisticated Local
Intensity Scales, would likely be ideal. One approach that would seem well suited, would be application
specific learning of the functional form using deep learning (21).

17 Performance Benchmark data
In this section, we give additional technical details regarding the CR and exemplar benchmark data.
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Image Quality Objects Np

Nperfectp

PSNR(Ipc)
PSNR(Ioriginal)

PSNR(Iperfectpc )

PSNR(Ioriginal)
PSNR(Ismooth)
PSNR(Ioriginal)

E∗pc(E = .1) σ
σideal

δ− δ+

Low

1 3.571 1.557 1.843 1.599 7.634 1.023 0.002 0.627
10 2.095 1.298 1.443 1.323 6.438 2.549 0.006 0.392
20 1.719 1.255 1.357 1.278 6.552 3.516 0.021 0.296

Med

1 1.623 1.666 1.736 1.715 0.327 1.192 0.002 0.228
10 1.028 1.307 1.330 1.354 0.239 2.531 0.075 0.080
20 0.950 1.191 1.234 1.249 0.257 3.580 0.123 0.059

High

1 1.476 1.590 1.558 1.641 0.085 1.202 0.003 0.180
10 0.947 1.124 1.192 1.221 0.067 2.447 0.072 0.041
20 0.869 0.984 1.128 1.114 0.075 3.584 0.131 0.028

Table 1: Evaluation of the Local Intensity Scale σ using the perfect APR benchmark

Image Quality Image Blur Np

Nperfectp

PSNR(Ipc)
PSNR(Ioriginal)

PSNR(Iperfectpc )

PSNR(Ioriginal)
PSNR(Ismooth)
PSNR(Ioriginal)

E∗pc(E = .1) σ
σideal

δ− δ+

Low

Low 2.753 1.103 1.335 1.112 13.387 1.982 0.002 0.532
Med 1.439 1.260 1.338 1.285 4.637 2.052 0.016 0.271
High 0.965 1.403 1.397 1.435 1.631 6.515 0.046 0.085

Med

Low 1.185 1.204 1.236 1.227 0.403 2.309 0.008 0.106
Med 1.017 1.179 1.213 1.237 0.291 1.903 0.046 0.052
High 0.647 1.189 1.252 1.282 0.077 6.527 0.314 0.020

High

Low 0.999 1.143 1.161 1.155 0.088 2.279 0.021 0.018
Med 0.970 0.919 1.075 1.087 0.098 1.988 0.065 0.038
High 0.639 0.889 1.148 1.101 0.039 6.483 0.306 0.027

Table 2: Evaluation of the Local Intensity Scale σ, using the perfect APR benchmark
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Computational Ratio (CR5) Computational Ratio (CR20) Computational Ratio (CR100)

Figure 32: Maximum intensity projection of examples of the Computational Ratio (CR) benchmark data that are used to represent low
(CR100), medium (CR20) and high (CR5) levels of information content (N = 4003).

17.1 Computational Ratio (CR) benchmark data
To assess the performance of the APR for different levels of image content, we choose three different CRs
for our synthetic benchmark data and then vary the original image size N . To represent low, medium, and
high image content relative to image size, we generate data sets for varying image size N and number of
objects M that approximately correspond to CRs of 100, 20, and 5 respectively. In SFigure 32, we show the
maximum projection for examples of a CR5, CR20, and CR100 synthetic data sets with image sizeN = 4003

(We use this CR’X’ notation in figures and the remaining text). However, we could not determine a procedure
for generating a precise CR for a given image. Instead, the datasets were generated using a linear estimate of
the number of objects required to reach a certain ratio (see below). Generated in this way, the CR does vary
acrossN , and the average CR values forN = 2003 toN = 10003 are 5.8, 19.3, and 89.4 for the CR5, CR20,
and CR100 cases respectively. The values of CR were set as to span realistic values as seen in the Exemplar
benchmark data.

17.1.1 Parameters

To achieve a certain CR, the number of objects must be changed with the image size N . The number of
objects in the benchmarks was set as N

33400CR , that was determined empirically. The actual CR will not
exactly be the ratio, but the above formula was found to provide good results for images of a width greater
than 200. The images were isotropically sampled, and medium blur and medium PSNR setting were used as
described in the benchmark evaluation section. The relative error bound E = 0.1, the gradient smoothing
parameter λ = 3.098, as set by the automated scheme.

17.2 Exemplar datasets
To assess the performance of the APR on real datasets, 19 fluorescent microscopy datasets were also bench-
marked. The datasets are across a range of image sizes, labels, specimen, and microscopes. A summary of
the datasets, their properties, are given in STable 3 and the parameters used in STable 4 to create the APR.
The CRs for the exemplar data sets range from a minimum of 5.6 to a maximum of 180, with a mean of 42.1
and median of 28.5. Parameters were set by experience and inspection of the original image. As mentioned
in the discussion of parameters (SMat 14), the parameter that can most greatly alter the result is the setting
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Original Image APR (Particles Coloured by Intensity) APR (Reconstructed)

ZoomZoom Zoom

Figure 33: A 2D slice showing the original image I (left), particles of the APR coloured by intensity (middle), and reconstructed image
Îpc (right) of labelled cell nuclei for a developing Zebrafish (Images courtesy of Gopi Shah, Huisken Lab, MPI-CBG Dataset number: 7
Table 3) The insets show a close up of the same region. The particle rendering was created by rendering all particles from Particle Cells
from which the image plane intersects.

of the minimum local scale threshold σth, and the intensity threshold Ip. In all cases, parameters were set
conservatively, including all content we could consider relevant to try and give lower bounds on the CR.
In particular, the presence of auto-fluorescence influences this decision, and given the ability of the user to
discriminate auto-fluorescents in many cases significantly higher computational ratios could be achieved.

18 Data structures
Given the Optimal Valid Particle Cell set V and particles P∗, that form the APR, the last step is to store this
information in memory in a data-structure that allows its efficient use in a wide range of tasks. The optimal
data-structure will be dependent on the particular use-case, or algorithms, with which the APR is being used.
Given the Particle Cells being a subset of a full oct-tree decomposition of the domain, for some tasks, a tree
decomposition may be optimal. However, the majority of image processing algorithms have been designed to
be implemented over pixel images stored as large contiguous arrays of pixels. This format has the advantage
of fast and cache-efficient local neighbor access, and the implicit coding of each pixels spatial coordinates
from the pixel data layout, providing performance and memory benefits. Therefore, we have opted to use
data-structures that attempt to mimic these efficient properties of pixel images, namely, the implicit coding
of spatial and resolution information, and fast neighbor access.

Here, we use the Sparse APR (SA) data structure. It is similar to compressed row storage for sparse
matrices, in that only the y coordinate is stored in a sparse manner per level. The SA data structure separates
the storage of the spatial coordinates and neighbor access in an Access Data class, from the storage of the
particle properties such as intensity stored as a large contiguous array and is summarized in SFigure 34.
The figure is in 2D but directly translates to 3D, where z is treated in the same manner as x. For every
non-empty level and x and z spatial index, a red-black tree, using std::map, stores a key-value pair for each
contiguous block of Particle Cells in the y spatial index direction. Each value-key pair is organised as follows
{ybegin, global index, yend}, where the key (ybegin) is the first y Particle Cell spatial index in the block, and
the value contains first the global index of the first particle in the block, and the final y Particle Cell spatial
index (yend). On average, we find there are twenty times less key-value pairs then Particle Cells in the APR.
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Figure 34: Schematic showing the construction of the data structure, using a 2D APR example for illustration. The Sparse APR (SA)
data structure contains an access structure, utilizes an std::map data structure that stores a key for every contiguous block of particles in
the y direction, and is used for determining the y spatial coordinate of the particle and global index. Each contiguous block is identified
by its first y-coordinate as the key, and its global index and final y coordinate. The other spatial coordinates (x, z) and resolution level
(l) are implicit in the data layout. Particle properties such as intensity are then stored in a contiguous array.

The structure allows random access by finding the closest key by a tree search, from which the co-ordinate
and global index can be directly calculated. The search cost, is worst caseO(log(G)), whereG is the number
of key-value pairs for the given x, z, level row. Across the Exemplar benchmark datasets, there was on
average 7 key-value pairs per row.

18.1 Neighbor Access
Neighbours are accessed by utilizing the random access of the SA data structure, and the fact that all neighbor-
ing Particle Cells can only differ by one level, and that Particle Cells form a spatial partition. The neighbors
in a particular direction are obtained by first querying the same Particle Cell level, then one lower level, and
finally the higher level is searched if the Particle Cell exists. Once the Particle Cell is found, the global index
can be directly calculated and therefore all particle properties accessed. The neighbor access is further aided
by the storage of the location of the last key-value pair that was accessed in each direction and level. This
allows for the searches in the tree only to be needed when a new neighboring contiguous block is required.

18.2 Memory Cost
The storage of the SA data structure requires both the Access data and any particle properties. The memory
cost of particle properties directly scale with the number of particles, with negligible overhead and therefore
reflects the CR of the dataset. The cost of the Access data is less transparent and depends on the original size
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of the image, the spatial structure of the given APR, and the given compiler and hence the implementation
of the red-black tree. The storage cost can be split into the cost of storing the x, z and level of the Particle
Cells, and the cost of the std::map and key-value pairs. The first cost scales only with lmax and the x and
z dimensions, the second is content dependent. Using memory profiling across the Exemplar benchmark
datasets we estimated the memory cost, finding that the overhead of the access data has a mean of 8.7 and
median of 5.4 bits per particle. Hence, the access data results in a roughly 50% over-head above the cost of
storing particle intensities as 16-bit unsigned integers in memory.

Dataset Nx Ny Nz N Labelled Specimen Microscope Source

1 1920 1080 201 4.17E+08 Membrane Phallusia Custom LSFM (22) Hufnagel Lab, EMBL (23) Ulla-Maj Fiuza, Lemaire Lab CRBM (CNRS)
2 3169 1097 181 6.29E+08 Vasculature Zebrafish (Danio rerio) Custom SPIM (24) Stephan Daetwyler, Huisken Lab MPI-CBG & Morgridge Institute for Research
3 3083 970 148 4.43E+08 Vasculature Zebrafish (Danio rerio) Custom SPIM (24) Stephan Daetwyler, Huisken Lab MPI-CBG & Morgridge Institute for Research
4 1824 834 809 1.23E+09 Nuclei Fly (Drosophila melanogaster) Zeiss Z.1 Tomancak Lab MPI-CBG
5 532 1352 11 7.77E+06 Nuclei Fly (Drosophila melanogaster) Custom LSFM (25) Royer Lab CZ Biohub and Keller Lab Janelia Farm
6 1920 1200 80 1.84E+08 Nuclei Fly (Drosophila melanogaster) Zeiss Z.1 Tomancak Lab MPI-CBG
7 1094 1162 637 8.10E+08 Nuclei Zebrafish (Danio rerio) Custom SPIM (26) Gopi Shah, Huisken Lab MPI-CBG & Morgridge Institute for Research
8 2354 972 39 8.97E+07 Nuclei Mouse Confocal DZNE (Christopher Schmied)
9 1000 1820 975 1.77E+09 Nuclei Flour Beetle (Tribolium castaneum) Zeiss Z.1 Akanksha Jain, Tomancak Lab MPI-CBG
10 1920 1080 335 6.95E+08 Membrane Phallusia Custom LSFM (22) Hufnagel Lab, EMBL (23) Ulla-Maj Fiuza, Lemaire Lab CRBM (CNRS)
11 1920 1120 178 3.83E+08 Nuclei Fly (Drosophila melanogaster) Zeiss Z.1 Tomancak Lab MPI-CBG
12 1000 1820 975 1.77E+09 Membrane Flour Beetle (Tribolium castaneum) Zeiss Z.1 Akanksha Jain, Tomancak Lab MPI-CBG
13 960 960 548 5.05E+08 Vasculature Zebrafish (Danio rerio) Custom SPIM (24) Stephan Daetwyler, Huisken Lab MPI-CBG & Morgridge Institute for Research
14 1200 1920 95 2.19E+08 Nuclei Zebrafish (Danio rerio) Zeiss Z.1 Tomancak Lab MPI-CBG
15 3169 1097 181 6.29E+08 Vasculature Zebrafish (Danio rerio) Custom SPIM (24) Stephan Daetwyler, Huisken Lab MPI-CBG & Morgridge Institute for Research
16 1000 1820 975 1.77E+09 Nuclei Flour Beetle (Tribolium castaneum) Zeiss Z.1 Akanksha Jain, Tomancak Lab MPI-CBG
17 3935 988 219 8.51E+08 Vasculature Zebrafish (Danio rerio) Custom SPIM (24) Stephan Daetwyler, Huisken Lab MPI-CBG & Morgridge Institute for Research
18 3736 1432 379 2.03E+09 Nuclei Mouse Confocal DZNE (Christopher Schmied)
19 1000 1820 975 1.77E+09 Membrane Flour Beetle (Tribolium castaneum) Zeiss Z.1 Akanksha Jain, Tomancak Lab MPI-CBG

Table 3: Description and source of the nineteen exemplar benchmark datasets used in the performance validation and processing sections
of the main text. Note the MPI-CBG is the Max Planck Institute of Molecular Cell Biology and Genetics, EMBL is the The European
Molecular Biology Laboratory, and DZNE the Deutsches Zentrum fr Neurodegenerative Erkrankungen e.V. and CRBM the Centre de
Recherches de Biochimie Macromolculaire

Dataset E λ Ith σth PSFw APR (GB) Image Size (GB) CR APR MCR APR MCR (WNL q=2) Pixel MCR (lossless) Pixel MCR (WNL q=2) Pipeline time (s) Pre-processing

1 0.1 3 120 30 2 0.025 0.83 18.5 33.9 93.4 3.5 58.3 1.6
2 0.1 3 998 100 2 0.024 1.63 39.2 67.7 228 3.4 10.7 3.2
3 0.1 4 50 60 2 0.016 0.89 25.8 54.0 153 3.1 100.5 1.7
4 0.1 5 98 200 2 0.207 2.46 8.4 11.9 34.1 2.1 10.8 5.6 Deconvolution
5 0.1 3 40 50 2 0.023 0.16 3.6 6.8 18.6 3.9 16.7 0.4
6 0.15 3 950 500 2 0.025 0.37 10.4 14.8 39.1 2.0 20.7 0.9
7 0.125 4 110 50 2 0.078 4.02 27.7 51.6 172 6.8 59.2 8.1
8 0.1 1 5 5 2 0.001 0.90 206.8 705.2 1505 131 531 1.7 Enhanced
9 0.15 3 2000 1000 2 0.096 3.55 29.7 36.8 98.6 2.0 87.5 6.7 Deconvolution

10 0.1 3 110 200 2 0.021 0.83 22.8 40.1 115.5 3.6 26.7 1.6
11 0.1 4 400 50 2 0.027 0.77 18.1 28.2 65.8 2.2 39.4 1.4
12 0.125 3 3000 1500 2 0.059 3.55 48.9 60.1 167 2.0 125.9 6.7 Deconvolution
13 0.1 3 1100 500 2 0.045 1.01 16.4 22.5 55.4 2.1 10.8 1.9
14 0.1 2 250 80 2 0.036 0.44 6.7 12.0 31.0 2.5 19.1 1.0
15 0.1 3 998 100 2 0.020 1.26 37.6 63.1 205 3.1 9.5 2.2
16 0.15 3 300 100 2 0.160 3.55 13.7 22.2 63 2.2 17.3 7.3 Deconvolution
17 0.1 2 1030 200 2 0.053 1.70 21.0 32.3 84 2.5 7.1 3.0
18 0.15 0.5 10 5 2 0.004 4.06 372.2 1134.5 2347 154 581 7.6 Enhanced
19 0.15 3 800 300 2 0.055 3.55 43.3 64.3 184 2.2 86.6 6.9 Deconvolution

Table 4: Summary of parameters used and summary statistics for the nineteen exemplar Benchmark datasets detailed in Table 3 and used
in the apr validation and processing sections of the main text. Note that for those images where preprocessing was undertaken, this was
done prior to the recieving of the image by the source. For details on the lossy compression results and implementation see SMat 20.1 .

19 Execution time

Total (s) Compute |∇I| Compute σ Initialize Pyramid Compute L Pulling Scheme Downsample Intensities APR Data Structure Data rate (MB/s)

Mean 3.658 58.8% 12.0% 0.4% 4.1% 3.5% 3.5% 4.0% 507.73

Median 2.198 60.6% 12.1% 0.3% 4.1% 3.4% 3.4% 3.5% 523.34

Standard Deviation 2.742 6.7% 2.0% 0.2% 0.5% 0.5% 0.5% 1.7% 45.86

Table 5: Timing summary of APR pipeline on Exemplar benchmark datasets. Summary of the total time taken, and the percentage
of each step in the pipeline, and the estimated data-rate of the pipeline for forming the APR from an image in memory.
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Here we provide additional information for the computational cost, or execution time, for forming the
APR from an original image with N pixels. The steps of forming the APR have been summarized the
schematic in SFigure 24 above. The pipeline can be broadly grouped into three steps, first calculating the
Local Resolution Estime L(y) using filtering operations on the original image, then forming Ln and finding
Vn using the Pulling Scheme and lastly constructing an APR data structure. Below, we first address the
overall cost and then provide more detailed analysis for the Pulling Scheme. We have not included the time
taken to load the image in memory in the analysis here.

19.1 Full pipeline
The pipeline has worst-case linear complexity in N , as all steps, excluding the Pulling Scheme, are linear
complexity in N . Further, the pipeline cost is constant concerning choice of pipeline parameters (λ and
PSFw), with exception of the impact of E on the number of particles. STable 6 summarizes the execution
time of forming the APR using the Exemplar benchmark datasets. The total pipeline takes on average 3.65
seconds to form the APR data structure from an input image in memory. This translates to an average data
rate of 507 MB/s per second on our benchmark machine using 10 OpenMP threads. Across all steps, the
computation of the gradient magnitude is most costly taking on average 58.8 % of the pipeline total cost,
while the Pulling Scheme only accounts for 3.5 %. The gradient calculation step includes the calculation of
the smoothing B-splines, and its relatively high cost is a result of it being the only step performed on the full
pixel image. We note that the Pulling Scheme and APR Data Structure steps cost depends on the final number
of total particles. STable 4 gives the Pulling Scheme and full pipeline time values for each dataset. Further,
SFigure 35, shows the linear scaling of the pipeline, and speed up through shared memory parallelization
using OpenMP. From the above values, we claim the implementation here is within the real-time values
that have been given in the literature ( (27), (28)), hence allowing potential calculation of the APR during
acquisition.

19.2 Pulling Scheme
We also present additional benchmarks here using only serial execution. We tested the Pulling Scheme for
randomly generated L. This allows the ability to directly alter inputs to the Pulling Scheme without having
to consider the whole pipeline and how to generate the appropriate synthetic image. In the first plot of SFig-
ure 36, we show the scaling of the Pulling Scheme for a fixed ratio of #L and N . In all benchmarks are run
with Particle Cells in L sampled uniformly and randomly from level lmin to lmax with a set probability. First,
we find confirmation of the worst case linear scaling represented by the Worst-case curve. This benchmark
corresponds to the largest #L for a given image size N . We also ran three other ratios, .1, .01, and .001,
finding linear scaling for all. Each of these benchmarks corresponds to scaling together both the image size
and the number of particle cells in L.

In the second benchmark, we fix the image size and increase the number of Particle Cells in L that are
randomly generated. In the second plot of SFigure 36, we plot the number of seed Particle Cells in V for
three different image sizes N . The number of seed Particle Cells is the number of Particle Cells given by
#(L ∩ V). We find this is the appropriate variable when compared to V because the number of neighbor
search operations is directly proportional to the number of seed Particle Cells, and not simply the absolute
#V . For all image sizes N we find non-polynomial scaling. With the rate of increase in execution time
decreasing as #(L∩V) increases. We note that the same relationship is seen for #L (they are proportional),
but arguably its is the number of seed cells that is the relevant variable. Empirically the relationship does not
seem to be a polynomial nor logarithmic. In the last benchmark, we instead fix the total number of Particle
Cells in L and consider the execution time as the image size N is increased. The results are shown in the
first plot of SFigure 37 for four different numbers of Particle Cells. The four levels were set at ratios of
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Figure 35: In the first plot, we show the linear scaling in N of the total processing time to generate the APR on 12 images ranging from
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we show a strong scaling of the pipeline, showing the speed up of the total processing time using an increasing number of CPU cores
for fixed images of size 3.17 GB and 63.4 GB. The datasets were generated by tiling Exemplar dataset 17. For both datasets, Amdahl’s
law was fit (Speed up = 1
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, where n is the number of CPU cores used), with the parallel fraction p reported in the inset legend.

The benchmarks were run on a server node with two CPUs with in total 48 Intel(R) Xeon(R) CPU E7-4830 v3 @ 2.10 GHz cores, and
1 TB RAM
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0.001, 0.01, 0.1 and 1 of the maximum number of Particle Cells in the N = 1003 image. For all four levels,
we find sub-linear scaling inN . That is, the execution time increases at a decreasing rate asN increases. This
is confirmed in the second plot, that shows the log-log plot of the same data. Interestingly, the polynomial
growth coefficient decreasing as the number of Particle Cells in L increases. With the smaller number of
Particle Cell benchmark being almost linear, scaling at ∼ N0.975, and the largest number of Particle Cells at
∼ N0.667.

From the fixedN benchmark we find that the dominant component of the computational cost comes from
the number of seed Particle Cells in V . However, the number of seed Particle Cells is constant across N .
Therefore, as N increases only the ’cheaper’ steps of adding boundary and filler Particle Cells are increased.

19.2.1 Pulling scheme summary

In summary, we have confirmed that the Pulling Scheme has worst-case linear scaling in N . Further, the
computational cost for fixed N is proportional to the level of information content through the number of
seed Particle Cells. However, we have no exact form for this scaling behavior, but it is sublinear. Further,
for a fixed size of L and increased N we find sublinear relationship, with a scaling rate that is inversely
proportional to the number of Particle Cells in L.

20 File-storage of the APR
We store the APR using the HDF5 file format (8) and BLOSC HDF5 plugin (9) for lossless compression.
For BLOSC, the Zstd compression algorithm is used with compression level 2 and shuffling activated. The
required information for reconstruction of the SA data structure is stored. The storage of the Access data
requires the storage of the key-value pairs and the locations of the non-empty rows. Particle properties are
stored in a single contiguous array. Stored in this way the Particle Cell spatial and resolution information is
highly compressed. The high compression is reflected in that on average 89% of the bytes are used storing
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the particle intensities. Further, in the limiting case where the number of particles is equal to the number of
input pixels, the particle intensities account for 99.99 % of the storage cost.

20.1 Lossy APR Compression
In the basic lossless storage method for the APR, all particle intensities are stored in a lossless manner. In
particular, those intensities at pixel resolution (accounting for the majority of particles), are directly sam-
pled from the noisy pixels. Hence, additional lossy compression can be done to reduce the cost of storing
these particles. Here we present the results of using the Within Noise Lossless (WNL) compression strategy
presented in (29). This is intended to highlight how the APR can be used to enhance existing compression
algorithms both in terms of computational cost and performance.

The WNL method approach was re-implemented in LibAPR, both with and without the neighborhood
prediction step. Here we used the approach of only applying the variance stabilization step for the APR as
for the results here we found that for the APR this provided the better compression and computational cost
trade-off.

Across all benchmarks the some parameters were fixed, namely e = 1.6 and conversion factor as
65363/30000. For all the APR results presented in Table 1, the quantization factor q = 2.0, and the back-
ground value was set automatically as Ib = 0.9Ith, where Ith is as set for the APR creation. The resulting
quantized symbols are then compressed losslessly using the BLOSC HDF5 plugin for the standard APR.
Further, the Particle Cell type is no longer stored in lossy compression benchmarks, to provide a clearer
’one-to-one’ comparison with the pixel images, and it is not a requirement for APR processing.

20.1.1 Pixel Comparison

In addition we compare the WNL approach run on APR (no prediction), and also on the original pixel image
(no prediction). For the pixel image, the prediction step leads to improved compression performance, and
therefore is used in the real data benchmarks in Table 3. However, for the APR this the prediction step did not
provide any noticable performance improvement. Here, for the setting of the background value Ib = 1000
to that of the ground truth image. SFigure 38 shows the PSNR of the image without the background and
Memory Compression Ratio (MCR) trade-off for the compressed pixel image and APR for q ranging from
0.1 to 12. The PSNR is computed only in the foreground region, as otherwise the comparison with the APR
is biased, as it denoises the background region resulting in a significantly higher PSNR when compared to
the original image.

We find from the results of a synthetic sphere image in SFigure 38 that the behaviour of the PSNR for
increasing quantization q is similar across both the APR and Pixel image. However, for a given q the achieved
MCR of the APR is on average 3.7 times higher. Further, given the APR approach does not use prediction,
the computational cost of the APR-WNL approach will be CR times faster than the comparable pixel-WNL
algorithm within prediction as no neighbor access is required. The second pane of the figure then shows
representative slices of the compressed and un-compressed images for both the original pixel and APR. We
note the similarity in image quality across the Pixel and APR compressed approach, despite the increased
MCR.

20.1.2 Exemplar Benchmarks

For the exemplar data benchmark datasets the full results are given in STable 4 for q = 2 on both the original
pixel images and the APR. For the pixel image the prediction step was included as this provided an increase
in compression ratio. On average the APR provided a 5.06 times higher MCR across the exemplars. For
comparison in Table 4 the MCR for the image losslessly compressed using the same approach as the APR
data is provided.
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Figure 38: The first plot compares the results of performing of WNL compression strategy outlined in (29) directly on the original
pixel image and on the APR particles for a 1203 sphere test image corrupted by Poisson noise where the quantization level q is varied
from 0.1 to 12. The plot shows the Peak Signal to Noise Ratio (PSNR), of the foreground regions set using the ground truth image, of
the uncompressed image in the case of pixels, and piece-wise constant reconstruction for the APR, vs the Memory Compression Ratio
(Original File Size/Compressed File Size). The MCR is also shown for the APR when only storing the particle intensities, and not the
spatial information in V . The blue dot represents the standard compressed APR, and the purple dot the losslessly compressed original
image. The second plot provides an examples of the test image at a fixed slice for the original image, pixels compressed with WNL
(q = 2), the original APR, and the APR compressed with WNL and q = 2.
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Figure 39: The APR paritcle graph, shown in 2D. This aligns with connecting the particles that are in face-connected Particle Cell
neighbours of the current Particle Cell.

21 APR particle graph
Many processing tasks on images require the formulation of pixel images as a graph, for example, graph-cut
methods (30). Pixels are set as the nodes, and edges are created between adjacent pixels. Although the APR
has changing resolution across the domain, a similar symmetric particle graph can be constructed from the
APR by using adjacent particle cells, or formally, an integral interaction neighborhood. SFigure 39, shows
such a graph restricting neighbors across the faces of particle cells, analogous to a Von Neumann (or face-
connected) neighborhood. In a classical pixel image graph, each node (pixel) would have the same number
of neighbors. However, due to the adaptive sampling in the particle graph, the number of neighbors can vary
as the resolution adapts. However, the maximum number and the minimum number of neighbors is bounded.
The minimum number of neighbors is 2d, as in the comparable pixel graph, and the maximum n2d where d
is the dimension (However, empirically in 3D benchmark data the average number of neighbors is less than
6.3).

In the face connected particle graph, particle p0 and p1 are neighbors if the line integral of the inverse of
the Implied Resolution Function is below a certain threshold

|(xp1
− xp0

)|
∫ 1

0

1

R∗(xp0 + s(xp1 − xp0))
ds ≤ 1

3

√
9 + d− 1 (204)

where d is the dimension. In 1D this bound is 1, and ≈ 1.054 in 2D and ≈ 1.105 in 3D. Particle neighbors
in the particle graph can be interpreted as those particle pairs for which the difference between the two value
will be approximately E

σ(y) where y is a position on the line segment between the points. Note, that these
points in dimension greater than 1 exceed the integral neighbor bound by a small factor. If it is wished
that the neighbours be guarantee a Reconstruction Condition Ê, the APR can be construction with E =

3̂E√
9+d−1

. Due to the isotropic nature of the Implied Resolution Function, this will guarantee that extending
the neighborhood, the particles on the edge can be used for any reconstruction, within E.
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22 Performance Benchmarks
All examples are intended as a proof of principle and to indicate performance. Further development would
be required to make these algorithms usable to the community, and this is left for future research. An effort
was made to optimize both the APR and pixel code in the same fashion to provide reasonable comparisons.
The impact of optimization is also motivation for the simple nature of the examples presented here. Shared
memory parallelism was used in all steps cases where it was easily achieved using OpenMP (7). As for the
evaluation benchmarks, all performance benchmarks code and analysis data is available on request and are
intended to be released open source.

22.1 Neighbor access
A core operation in many image-processing algorithms is access to the values of neighboring pixels. For this
benchmark, we contrast the time taken to access the values of all face-connected neighbors of each pixel, or
particle. In a pixel image, excluding boundaries, there are always 6 face neighbors. When the pixel image is
stored as a contiguous array, accessing these pixels is simply a fixed memory offset for each pixel. However,
for the APR, due to the adaptive sampling, the number of face connected neighbors can vary per particles
from 6 to 24 (However, in practice, the average number of neighbors per particles in the CR = 5 benchmark
data sets was 6.23). Neighbour access of face connected neighbors is achieved as described in SMat 18.1.

In this benchmark, for each pixel, and particle, the face-connected neighbor’s intensities are averaged
and stored in with another pixel image, or APR data-structure of float datatype. For performance, the order
in which pixels, or particles, are accessed heavily impacts performance through the impact of the various
caches of the processor. Therefore, here we run two benchmarks, one where the pixels, or particles, are
iterated over in memory order, and the second where random pixels, or particles, are itearted over with a
random ordering. The first case we call the Linear Neighbour Iteration, and the second Random Neighbour
Iteration benchmarks. The two examples represent the two extremes of neighbor access in image processing
algorithms, with linear iteration on a pixel image corresponding to arguably optimal memory access patterns,
and random iteration, the worst case.

22.1.1 Linear neighbor iteration

For the pixel linear benchmark, the pixels are iterated over in memory direction. For each pixel, the neighbors
are looped over, again in memory direction, checking for boundary conditions, accumulating the value in a
temporary variable that is then stored in a second array.

For the particle linear benchmark, the particles are iterated over, level by level, in memory direction of
the SA data-structure. For both pixels and particles, the results were averaged over 10 consecutive runs.

22.1.2 Random neighbor iteration

For the pixel random benchmark, instead of iterating over pixels in memory direction, a pixel is chosen
randomly from the dataset, and the neighbors are summed. For the particle random benchmark, similarly, a
random particle is chosen, and then the neighbors are summed. In both cases the random pixels and particles
are first pre-computed, then iterated over. In both cases, 10000000 random accesses where timed.

Memory overhead For the pixel benchmarks, the memory overhead is the original image and an array of
the same size. The data-type of the input images was unsigned 16 bit integers and the output single precision
float. Therefore the memory cost MC = 6N Bytes for an image with N pixels. For the particle bench-
mark the SARA data-structure, with unsigned integer 16 bit intensity plus an additional single precisionfloat
particle property was used. The memory cost is as described in SMat 18.2.
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22.2 Separable pixel filtering
In the pixel separable filter, the 1D filter is convolved successively in each direction. This is done by iterating
over the particles in memory direction, checking the boundary conditions, then looping over the neighbor
offsets, multiplying by the coefficient and accumulating this in a temporary variable. The temporary variable
is then assigned to the output image array.

In the particle separable filter, first, a 2D image slice is interpolated using piecewise constant interpola-
tion, with the slice translated such that the filter operation could be done in the contiguous memory direction.
Due to the placement of particles at intervals at powers of 2, only the highest resolution aligns with a pixel
layer, with other being between the intersection of two layers. All particles that are either aligned with the
slice, or intersect, the slice are iterated over, calculating the filter value through accumulating in a temporary
variable as for the pixels, and then assigning this to the output particle property. In the case of when the
particle intersects between two layers, the output is then the average of the two filter values.

For the benchmarks given here a large filter 1D constant filter stencil of length 21 was used. Relative
performance results are relatively insensitive to the size of the filter. For the particle filter, each direction was
repeated 10 times to get the timing values. However, for each benchmark image, the filter on pixels was only
run once. This was due to the higher computational cost restricting a higher amount of repetitions. However,
for each CR and N combination, at least 20 independent repetitions were performed.

22.2.1 Memory overhead

For the pixel benchmarks, the memory overhead is the original image and an output array of the same size.
For both the used data-type of the images was float. Therefore the memory cost MC = N8 Bytes for an
image with N pixels.

For the particle benchmarks, the computation required the SA data-structure, an additional particle prop-
erty for the output, and an array for the temporary 2D image slice used. Therefore the memory cost is
MC = 6Np + 16 22lmax−1

3 + 4N2/3 Bytes. If we ignore the over-head of the SA, and temporary array, the
relative memory cost RMC ≈ 0.8 ∗ CR.

22.2.2 Comparison between approaches

However, the results from these two approaches are different and do not present a fair comparison. To
evaluate differences we compared the result of the pixel filter, and the APR filter interpolated to an image, to
the ground truth image filtered by the pixel filter for 100 realizations for a fixed image size (2503, CR5). For
comparison, we also computed the result of the pixel filtering on a piecewise constant reconstruction from
the APR. We did this for a small σ = 0.5 and larger σ = 2 blurred kernel.

Examples of the results are shown in SFigure 40. For the small blur kernel, the mean APR PSNR was
30.68 with a standard deviation of 1.49, for the original image 23.38 with a standard deviation of 0.395, and
for the reconstructed APR 30.71 with standard deviation 1.26. Therefore, the APR filter provided accurate
results. However, in the large blur kernel, the mean APR PSNR was 31.883 with a standard deviation of
2.89, for the original image 42.93 with a standard deviation of 0.6, and for the reconstructed APR 42.56 with
standard deviation 1.14.

These results indicate that the APR filter no longer produces accurate results. The poor performance can
also evident in the bottom right image in SFigure 40 where distinct artifacts can be seen. This is the result of
the Implied Resolution Function not being valid for the intermediate filtering results in the separable scheme.
In such cases, it seems it would be necessary to result to pixel filtering on a reconstructed APR, as those
results are equivalent for larger filters. This also indicates that the failing is not due to the piece-wise constant
reconstruction. The poor performance is not a pure function of filter size, but depends on the spatial scales of
the resulting function, with large filters designed for edge detection not showing similar issues (not shown).
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  Ground Truth Filter σ = .5   Pixel Filter σ = .5   APR Filter σ = .5

  Ground Truth Filter σ = 2   Pixel Filter σ = 2   APR Filter σ = 2

Mean PSNR: 23.38 Sd: .39 Mean PSNR: 30.68 Sd: 1.49 

Mean PSNR: 42.56 Sd: .6 Mean PSNR: 31.88 Sd: 2.89 

Figure 40: Example images of the validation for separable filtering benchmark. The APR and pixel algorithms were run using a narrow
Gaussian (top) and broad Gaussian (bottom), for the pixel filter for noise-free ground truth image (left), the original image (center) and
the APR filter the reconstructed to an image (left). The mean and standard deviation of the PSNR compared to the ground truth filter
over 100 for a CR5 image of size 2503 is provided at the bottom of the images. The results show that the APR filter works well for small
blur kernels. However, as the kernel gets larger the APR filter no longer produces accurate results, reflected in the low PSNR compared
to comparable the pixel filter.

Hence we conclude, that the above approach is only of specific use, and does not represent a direct replace-
ment for pixel filtering. The example also illustrates the care that must be taken when adapting algorithms
from pixels to the APR.

22.3 Graph cuts segmentation
For the last performance benchmark, we perform a binary segmentation with graph cuts using an external
library. Here, we show how the APR can be used with existing techniques and libraries while still realizing
computational and memory benefits due to the reduced number of computational points. For this, we use the
maxflow-v3.04 library implementing the min cut-max flow algorithm presented in (30).

Further, we use an energy function that is defined using the information inherent in the APR, as an
example of how it could be used. Because of this, then to compare with the same algorithm on the original
pixel image, we first compute the energy on the particles and then interpolate them to original images to be
then used for the energies for the pixel image.

To use the max-flow algorithm for segmentation, we must define two energy values for each pixel or
particle, Es, giving a likelihood of belonging to the foreground, and Et, the likelihood of belonging to
the background. Additionally, an energy is specified between neighboring pixels or particles in the graph.
Here, we use again the face-connected pixel or particle neighborhoods, where we define a symmetric energy
between the two neighbors p and p′, as Ep,p′ .

As discussed we first define the energy on particles, and then to form the graph for pixel image, we
interpolate these energies to a pixel image. For the background and foreground energy, we use the following

Es = 2000|Ip − Iminp | (205)

Et = 2000|Ip − Imaxp | (206)

where Iminp and Imaxp are estimates of the local min and max scaled by the resolution of the particle. This is
by treating the APR as a tree structure. Maximum and minimum values are propagated up the tree, taking the
respective min or max of children values. The value is then averaged over the neighbors at each level in the
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Original Image Ground Truth Binary Mask

Segmentation APR Segmentation Pixels

Mean DSC APR : 0.88 Sd: 0.069 Mean DSC Pixels : 0.87 Sd: 0.087 

Figure 41: Validation for segmentation performance benchmark. The same energy function was used for both pixel and APR seg-
mentation. The ground truth binary image is creating using the binarization of the Object function (SMat 15.1). The APR and pixel
segmentation give near identical results as shown by the computed Dice Similarity Coefficients (DSC (31)) mean and standard deviation
over 100 repetitions for CR5 images of width 250 given in the figure.

tree. Then for each particle, the value in the tree k resolutions above is taken as the value for Imin or Imax

respectively. The algorithm essentially creates an adaptive min or max. As the purpose of this benchmark is to
focus on the computational and memory characteristics of the algorithm and not propose a new segmentation
algorithm or energy, we do not go into further details here.

The edge energy between any two particles, or pixels, is taken as

Ep,p′ = 100
(spsp′)

2

81
. (207)

As discussed, once the energy has been computed over particles, those were then used to also create
a pixel image with the same energies interpolated. Then the appropriate data structures for the max-flow
algorithm were generated, the max-flow algorithm run, and the binary labeling of background or foreground
extracted from the result.

In the benchmark performance analysis, we assess only the computational time, and memory cost, of the
max-flow algorithm, and not the including the generation of the energy or setting up the graph.

22.3.1 Memory Cost

Due to the use of an external library, we estimated the memory cost by performing memory analysis on the
code with different particle and pixel sizes and empirically evaluating the value. For the performing max-flow
on the pixel graph, we found the memory cost MC = 411.6N and for the particle graph MC = 436Np.
Providing very similar results, this is although the particles can have up to 24 neighbors, on average for the
benchmark data sets there is only approximately 6.3.
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22.3.2 Comparison between approaches

To validate that the APR segmentation, we compared the APR and pixel image segmentations to ground-truth
and calculated the Dice Similarity Coefficient (DSC) (31) for 100 repetitions of a CR5 image of width 250.
We define the DSC in our case as,

DSC =
#(Sgt ∩ Sp)
#Sgt + #Sp

, (208)

where Sgt is the set of pixels in the support of the Object function and Sp, is the estimated set of pixels from
the segmentation algorithm, and # indicates the size or cardinality, of a set. To allow direct comparison with
the pixel result, for calculation of the DSC a piecewise constant reconstruction from the APR segmentation
was used. Figure 41, shows an example segmentation, with the original image, ground-truth segmentation,
and segmentations results for the APR and pixel algorithm given. The calculated DSCs of both approaches
are statistically identical, with the APR having a mean of 0.88 and a standard deviation of 0.069 and the pixel
segmentation a mean of 0.87 and a standard deviation of 0.087. The closeness of the results can be seen in a
visual comparison, with only isolated pixels being different. From above, we conclude that the results of the
two approaches are comparable.

22.3.3 Alternative energy for Exemplar datasets

For applications to exemplar data, we developed a slightly altered energy function. The background and
foreground energy were altered by using one iteration of APR adaptive smoothing (See Section Below),
on both the intensity and adaptive min and max. The edge energy between particles was changed to be
asymmetric to the following

Ep→p′ = 100 exp
Ip − Ip′

d(p, p′)(Imaxp − Iminp )
, (209)

where d(p, p′) is the distance between the two particles. We found that this energy appeared to give reasonable
results across a wide range of the exemplar data-sets with no adjustment of parameters except an intensity
threshold for removal of background objects. Hinting that the information gained in the APR allows for
regularization of the problem that may help with designing future algorithms with stable parameters across a
range of problems.

22.4 Adaptive APR Filters
Although smoothing and gradient operations are not well suited to the separable filtering approach shown
earlier, a more natural approach for the APR is to define filters not over pixels as for traditional filtering, but
over particles. With the filter coefficients acting on the particle neighbors. Using particle neighbors results
in the filter adapting its neighborhood size across the domain to the resolution set by the Implied Resolution
Function R∗ of the APR.

22.4.1 Smoothing filters

As a first example, we show benchmark results for an adaptive smoothing filter. As for the classic separable
filters, each direction is filtered separately with a 1D filter {0.1, 0.8, 0.1}, and in succession with a 1D filter.
In the case where the neighbor is of higher resolution, an average of the neighbor particles is used.

Adaptive APR filters are the APR equivalent of the separable pixel filters benchmarked above. Defining
the filter over neighboring particles from the particle graph, instead of equally spaced pixels. As the distance
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between neighboring particles varies across the image, computing an adaptive APR filter is analogous to a
spatially adaptive pixel filter with filter size changing to the content of the image.

We also tested an adaptive APR smoothing filter that involves taking a weighted average over neighboring
particles. Multiple passes were made for greater smoothing. Comparative results for the same data as the
gradient example are shown in SFigure 42. The adaptive APR smoothing filter showed a higher PSNR (37.8)
increase than any fixed kernel Gaussian smoothing on the original image (maximum 33.42). This held for
from one to seven passes. We have shown the results for four taps, as that was the best result for the adaptive
APR smoothing filter. Therefore the adaptive APR smoothing filter provides an alternative for smoothing
other than using a pixel filter approach discussed above.

22.4.2 Gradient filters

As a second example we define adaptive gradient filters, similar to standard finite differences, with the co-
efficients adjusted for the distance between the particles. The gradient filter used here is {− 1

2h−
, 1

2h−
−

1
2h+

, 1
2h+
}, where h+ and h− are the distances between particles in the positive and negative directions

respectively. In the case where a neighbor is of higher resolution, an average of the neighbor particles is used.
The gradient in each direction is calculated by taking the average of one-sided differences between neigh-

boring particles in each direction (as a particle can have up to 8 neighbors in one direction, i.e. x,y, or z).
SFigure 43, shows the results for benchmark data, where we compare the result with the gradient magnitude
calculated using central finite differences on the original and ground truth images for 100 CR5 images of
width 250. The adaptive APR filter had an average PSNR of 34.6 and standard deviation of 1.2394 while the
average PSNR for the original image approach had an average PSNR of 16.78 with a standard deviation of
0.1802. Hence, the adaptive APR filter shows significantly more robustness to noise for our benchmark data.
The algorithm also provides nice denoising properties for the exemplar datasets, as shown in SFigure 44 for
one slice of an LSFM dataset.

22.5 APR visualization
A key processing task using LSFM data is visualization. Both for display of the original image data and any
processed results. Visualization is a processing task, as the raw data can not be viewed directly, and must be
processed ’in some way’ to provide a visual representation. For 3D visualization, this is evident, as the image
data represents an opaque 3D cube of integers. However, even for visualization of the original 2D image
slices usually requires calculation, or manual setting, of a visual contrast range.

The APR, rather than restricting the visualization possibilities, extends them when compared to the orig-
inal image data. Given, as that a pixel image representation can be constructed from the APR, this is not
surprising. Here, we discuss three different avenues of APR visualization that can be achieved without re-
turning to the full pixel image. We do not benchmark the relative computational or memory performance
below, showing the results as proof of principle. We leave the development of efficient implementations and
studies of relative performance to future work.

22.5.1 2D slice reconstruction

The first visualization method we present, is visualization by reconstruction, on a slice by slice basis. If we
only wish to view one slice at a time, the reconstruction can be done on a slice by slice basis. Hence, this
does not require having to reconstruct the whole image (as used in the pixel filtering above). In addition
to the multiple examples throughout the thesis above, Figure 6A gives examples of the APR reconstruction
and comparison to the input image. In practice, we find that the piecewise constant reconstruction has been
sufficient for visualization purposes. This could easily be implemented in real time per slice, as on a 2013
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  Ground Truth Image   Original Image

 APR (reconstructed) APR Adaptive Smooth (4 Passes)

PSNR Mean: 17.93

PSNR Mean: 30.42 PSNR Mean: 37.80

Figure 42: Evaluation of APR Adaptive Smooth filter with synthetic data, obtained by filtering in each direction with {0.1, 0.8, 0.1}
directly with particle neighbors generating an adaptive filter, with multiple particles on one face being averaged. Top left, shows the
original ground truth image, Top right shows the original image, bottom left APR reconstructed image, and bottom right shows an
example result of four passes with the filter in each direction. For each image, the mean PSNR with reference to the ground truth image
is shown over 200 repetitions for CR5 images of width 250. Four passes achieved the maximum PSNR for the APR. However, any
number of passes of those tested (up to 7) exceeded the PSNR of any Gaussian filter on the original or reconstructed image (maximum
PSNR of 34.4).
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  Original Image   Ground Truth Gradient Magnitude

Original Gradient Magnitude (Finite 
DI�erences)

  APR Adaptive Gradient Magnitude

Mean PSNR: 16.75 Mean PSNR: 34.60

Figure 43: Evaluation of Adaptive APR filter used to compute the gradient magnitude with synthetic data, obtained by filtering in
each direction with {− 1

2h−
, 1
2h−

− 1
2h+

, 1
2h+
}, where h+ and h− are the particle spacings in the positive and negative direction

respectively, and multiple particles on one face being averaged. Top left original noisy image, top right ground truth gradient magnitude
using finite differences, bottom left original image gradient magnitude using finite differences, and bottom right APR Adaptive gradient
magnitude. The mean PSNR with respect to the ground truth gradient magnitude is given averaged over 100 repetitions, for CR5
N = 2503 images.

 Adaptive APR Gradient MagnitudeOriginal Gradient Magnitude (Finite DI�erences)

Figure 44: Evaluation of Adaptive APR filter used to compute the gradient magnitude on an exemplar dataset 10 in Table 3. The
right image was generated using central finite differences to compute the gradient magnitude on the original image. The left image
was obtained by using adaptive APR filtering in each direction with {− 1

2h−
, 1
2h−

− 1
2h+

, 1
2h+
}, where h+ and h− are the particle

spacings in the positive and negative direction respectively, and multiple particles on one face being averaged, and then the image formed
using piecewise constant reconstruction.
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laptop, reconstructing a 1000× 1000 slice took approximately .002 seconds. Although, given correct setting
of the contrast control, such piecewise constant representations do show significant ’artifacts’ as shown in
SFigure 28. If these are not desired more smooth reconstructions could be used as described in SMat 10 at
an additional computational cost.

Memory overhead Memory cost for 2D slice reconstruction is the memory cost of the Sparse APR data
structure (SA) plus the cost of storing the 2D slice. In comparison standard viewing of a standard pixel image
in software such as Fiji (32) requires the storage of the full image in memory.

22.5.2 Perspective ray-cast

A perspective ray-cast allows for the visualizing 3D content by constructing a 2D image by simulating rays
that would be seen by an observer from a particular location. However, because an image volume is just
intensity values, an algorithm must be specified for turning the intensities seen by each ray into an observed
value. The most common algorithm is simply to take the maximum value along the ray, the basis of the
maximum projection. This technique is used in current state of the art visualization software such as (33).
Here we have implemented a maximum intensity perspective ray-cast algorithm for the APR. For comparison,
we also implemented the comparable algorithm for a pixel image.

Following we describe the principle of the pixel algorithm and then use this as a reference for the descrip-
tion of the APR algorithm. The pixel algorithm involved rastering over each pixel, then calculating which ray
this pixel would intersect with, and then updating this ray with the value if it is greater than its current value.
This is in contrast to the alternative approach where the image volume is traversed individually for each ray.
Each ray corresponds then to a pixel in the final viewed image.

For the APR algorithm, the main difference is that we assign each particle to a ray corresponding to its
level l, effectively creating an image view at each resolution level. Once all particles have been traversed,
the maximum operation is then propagated between levels from lower resolutions to the highest resolution.
Resulting in a final highest resolution image that is viewed. We find that the APR algorithm has moderate
overhead, with a PP ratio of approximately 0.75, when compared to the pixel algorithm.

The algorithms compute different results, however as discussed in the main text, they produce in most
cases perceptively identical results in normal contrast ranges.

SFigure 45, shows an example of a maximum perspective ray-cast computed on the original image, and
direct on the APR for an LSFM data set. Shown at the given contrast levels the two are virtually indistin-
guishable. However, there are still distinct differences, with SFigure 46 highlighting them using a different
contrast range. The APR ray cast is done by casting multi-resolution rays through the image, level by level,
and then combining the results in a final step. The algorithm has a computational and memory complexity
that is O(Np), only requiring the SA data structure. Such an algorithm could form the basis of useful visual-
ization software, as currently in for the largest images (approximately > 10003) can not be visualized at the
full resolution in the current state of the art software (33) due to memory constraints.

Memory overhead When computing the ray-cast on a pixel image, the memory required is that of the
original image and the ray-cast result. This memory cost is similar to that of the APR ray-cast. The APR ray-
cast requires the Sparse APR data-structure, and the ray-cast result, plus the down-sampled by two results.
For reasonably sized data-sets in both cases the memory cost is dominated by the original image, and APR
data-structure respectively. Therefore, the memory reduction for a particular dataset will be approximately
CR
1.5 (reflecting the cost of storing the access data).
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Pixel Raycast

APR Raycast

Figure 45: Comparison for the same view perspective of an APR (bottom) and Pixel (top) maximum intensity ray cast of exemplar
dataset 17 in STable 3.

APR Raycast

Pixel Raycast

Figure 46: Reproduction of the pixel and APR ray-cast example for the same view shown in Figure 45. Contrast has been adjusted to
highlight the differences and loss of information for the APR ray-cast resulting from an intensity threshold. (Dataset number: 17 in
STable 3)
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22.5.3 Direct particle rendering

The last visualization method involves direct visualization of the APR. We have given various examples of
this in 1D and 2D throughout the thesis above. Not only can the intensity be visualized, but also the particle
cell level, location, and type. In the main text, Figure 5 shows an example of this for a small portion of LSFM
data in 2D. With the use of thresholding or variable opacity, particles can also be directly rendered in 3D.

Memory overhead Ideally direct renderings memory overhead should only reflect the cost of the SA data-
structure, however memory efficient algorithms for rendering have yet to be developed and depend on a GPU
implementation and are thus left for future work. The current visualizations, are relatively memory inefficient,
requiring the direct storage of the spatial coordinates as floats, in addition to the particle information.
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2. O. Awile, F. Büyükkeçeci, S. Reboux, I. F. Sbalzarini, Computer Physics Communications 183, 1073
(2012).

3. K. Okikiolu, Journal of the London Mathematical Society 2, 336 (1992).

4. D. L. Donoho, I. M. Johnstone, biometrika pp. 425–455 (1994).

5. B. Schrader, S. Reboux, I. F. Sbalzarini, Journal of Computational Physics 229, 4159 (2010).

6. R. A. DeVore, B. Jawerth, B. J. Lucier, IEEE Transactions on information theory 38, 719 (1992).

7. O. A. R. Board (2013).

8. The HDF Group, Hierarchical Data Format, version 5 (1997-2017). Http://www.hdfgroup.org/HDF5/.

9. F. Alted, Blosc, an extremely fast, multi-threaded, meta-compressor library (2017).

10. M. Unser, A. Aldroubi, M. Eden, IEEE transactions on signal processing 41, 834 (1993).

11. D. Sage, Local normalization, http://bigwww.epfl.ch/sage/soft/
localnormalization/ (2002 (accessed December 2013)).

12. F. C. Crow, ACM SIGGRAPH computer graphics 18, 207 (1984).

13. G. Vicidomini, From Cells to Proteins: Imaging Nature across Dimensions (Springer, 2005), pp. 371–
393.

14. J. Mathews, R. L. Walker, Mathematical methods of physics, vol. 501 (WA Benjamin New York, 1970).

15. L. J. Van Vliet, F. R. Boddeke, D. Sudar, I. T. Young, Digital Image Analysis of Microbes: Imaging,
Morphometry, Fluorometry, and Motility Techniques and Applications pp. 37–63 (1998).

16. ArrayFire, Arrayfire library (2015).

17. F. S. Nooruddin, G. Turk, IEEE Transactions on Visualization and Computer Graphics 9, 191 (2003).

18. P. Min, binvox, 3d mesh voxelizer (2017).

91

 http://bigwww.epfl.ch/sage/soft/localnormalization/
 http://bigwww.epfl.ch/sage/soft/localnormalization/


19. Repository of static 3d-meshes.

20. M. Schmidt, H. Lipson, Nutonian, Somerville, Mass, USA (2013).

21. I. Goodfellow, Y. Bengio, A. Courville, Deep learning (MIT press, 2016).

22. U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, L. Hufnagel, Nature methods 9, 730 (2012).

23. L. Guignard, et al., bioRxiv p. 238741 (2017).

24. S. Daetwyler, J. Huisken, The Biological Bulletin 231, 14 (2016).

25. L. A. Royer, et al., Nature biotechnology 34, 1267 (2016).

26. B. Schmid, et al., Nature communications 4 (2013).

27. B. Schmid, J. Huisken, Bioinformatics 31, 3398 (2015).

28. Y. Afshar, I. F. Sbalzarini, PloS one 11, e0152528 (2016).

29. B. Balazs, J. Deschamps, M. Albert, J. Ries, L. Hufnagel, bioRxiv p. 164624 (2017).

30. Y. Boykov, V. Kolmogorov, IEEE transactions on pattern analysis and machine intelligence 26, 1124
(2004).

31. L. R. Dice, Ecology 26, 297 (1945).

32. J. Schindelin, et al., Nature methods 9, 676 (2012).

33. L. A. Royer, et al., Nature methods 12, 480 (2015).

92


	Contents
	Mathematical Notation
	Adaptive Particle Representation (APR)
	Main mathematical result summary
	Result 1
	Result 2
	Result 3

	1D Reconstruction Condition and Resolution Bound
	Restriction on Local Scale Function

	General Dimension Reconstruction Condition and Resolution Bound
	Particle Cells Definitions
	Implied Resolution Function
	Local Particle Cell set
	Maximum resolution level

	Optimal Valid Particle Cell sets
	Particle Cells and smoothness of the Local Intensity Scale

	Pulling Scheme
	Self-similarity and production of individual solutions
	Separability
	Redundancy of Particle Cells
	Equivalence Optimization
	Additional Algorithm Description
	Integral neighborhood optimization
	Fulfillment of Reconstruction Condition

	Computational and memory complexity

	Particle sampling
	Optimality
	APR as {Vn,P*}

	Practical considerations
	Discrete sampling
	Impact of noisy Local Resolution Estimate L(y)
	Derivation

	Impact of noisy particles (yp)
	Convergence rate of MSE of APR
	Derivation
	Pointwise approximation using R(y)

	APR reconstruction
	Noise distribution of APR particles
	Gaussian Noise
	Poisson Noise


	Comparison with continuous resolution functions
	Reconstruction Condition vs. Resolution Bound
	Bounds for Implied Resolution Function
	Bounds on particle sampling
	Observed numerical bounds

	General (,m)-Reconstruction Condition
	Multiple resolution conditions

	Reconstruction Methods
	Piecewise constant reconstruction
	Smooth reconstruction
	Smooth - seperable linear reconstruction
	Worst-case reconstruction


	1D Validation
	Implementation
	1D example
	Reconstruction Condition
	Numeric vs. symbolic gradient
	Number of particles
	Gradient
	Discontinuities

	2D wavelet comparison
	APR implementation
	Wavelet thresholding implementation
	Error norm comparison

	3D Flouresence Image APR Pipeline Implementation
	Pipeline input and memory requirements
	Smoothing B-splines
	Gradient magnitude | I |

	Local Intensity Scale (y)
	Local Resolution Estimate L(y) and Local Particle Set L
	Pulling Scheme V
	Intensity estimation Ip
	Reconstruction methods
	Pipeline parameters

	Pipeline parameter Summary
	Image parameters
	Reconstruction parameters
	Relative error E
	Smoothing parameter 
	Local Intensity Scale threshold th


	3D synthetic data
	Object function
	Image formation
	Step Summary
	Image size
	Information content
	Image blur
	Image noise level
	Sampling

	Implementation Details
	Template image
	Ground truth image
	Original (noisy) image

	Perfect APR and ideal Local Intensity Scale

	Validation Benchmarks
	Benchmark parameter selection
	Relative error bound E
	Minimum Local Intensity Scale threshold th

	Noise-free image Reconstruction Condition
	Parameters

	Noisy image Reconstruction Condition
	Parameters
	Image statistics
	Parameters
	Particle Intensity Estimation
	Image statistics

	Increasing information content
	Parameters
	Image statistics

	Increasing image size
	Parameters

	Increase sampling
	Evaluate Local Intensity Scale
	Parameters
	Statistics summary
	Result summary


	Performance Benchmark data
	Computational Ratio (CR) benchmark data
	Parameters

	Exemplar datasets

	Data structures
	Neighbor Access
	Memory Cost

	Execution time
	Full pipeline
	Pulling Scheme
	Pulling scheme summary


	File-storage of the APR
	Lossy APR Compression
	Pixel Comparison
	Exemplar Benchmarks


	APR particle graph
	Performance Benchmarks
	Neighbor access
	Linear neighbor iteration
	Random neighbor iteration

	Separable pixel filtering
	Memory overhead
	Comparison between approaches

	Graph cuts segmentation
	Memory Cost
	Comparison between approaches
	Alternative energy for Exemplar datasets

	Adaptive APR Filters
	Smoothing filters
	Gradient filters

	APR visualization
	2D slice reconstruction
	Perspective ray-cast
	Direct particle rendering


	References

