
Supplementary	Note	2:	Winners’	curse	correction	of	post-hoc	power	analysis	of	replication	studies	

	

In	order	to	investigate	the	numbers	of	replicated	loci	observed	in	our	study	we	carried	out	a	Winner’s	Curse	

correct	power	analysis.	The	power	of	a	study	is	the	probability	of	rejecting	the	null	hypothesis	given	that	the	

alternate	hypothesis	is	true	(i.e.,	the	true	positive	rate,	or	sensitivity).	By	linearity	of	expectation,	the	sum	of	the	

powers	of	 each	of	 the	 SNP	associations	 is	 an	estimate	of	 the	number	of	 replications	we	 should	expect	 in	 a	

replication	cohort,	under	 the	assumption	 that	all	of	 the	associations	are	 true.	For	example,	 in	our	discovery	

cohort	we	identified	1,262	associations	at	a	–log10	p-value	threshold	of	7.5	(see	Supplementary	Table	5),	and	in	

the	N	=	930	replication	cohort	we	replicated	455	of	these	associations	at	nominal	significance.	A	power	analysis	

can	determine	whether	or	not	these	455	replications	are	more	than	we	should	expect,	because	it	allows	us	to	

estimate	 (or	 ‘predict’)	 the	 number	 of	 replications	 we	 would	 see	 in	 a	 ‘best	 case’	 scenario	 in	 which	 all	 the	

associations	are	true.	This	power	analysis	is	based	on	[1].	

	

For	a	study	that	employs	a	linear	model	with	significance	level	α,	if	the	true	value	of	the	effect	size	is	β	and	if	the	

true	value	of	the	standard	error	is	σ,	then	the	power	of	a	study	with	a	cohort	of	size	N	is:	

	

𝑝 𝛽	, 𝜎, 𝑁, 𝛼 = 𝑓 𝑔 1 − 𝛼 2 ;𝑁 − 2 ; 	𝑁 − 2, 𝛽 𝜎 .	

Equation	1	

Here	𝑓(𝑥; 𝑑, 𝑐)	is	the	distribution	function	of	a	non-central	Student-t	distribution	with	d	degrees	of	freedom	and	

non-centrality	parameter	c	evaluated	at	x,	and	𝑔(𝑥; 𝑑)	is	the	quantile	function	of	a	Student-t	distribution	with	d	

degrees	of	freedom	evaluated	at	x	[2].	

	

To	examine	the	power	of	a	replication	cohort,	we	may	use	Equation	1	and	substitute	the	effect	size	found	in	the	

discovery	cohort.	However,	this	is	a	biased	estimate	of	the	true	effect	size.	The	bias	arises	from	the	fact	that	we	

are	conditioning	on	the	event	that	the	association	was	found	to	be	significant	at	level	α	in	the	discovery	cohort.	

There	is	some	fluctuation	in	effect	size	due	to	sampling	noise,	and	so	conditioning	on	significance	will	bias	the	

sampling	noise	towards	the	tails	of	the	distribution	on	the	effect	size.	This	is	known	as	the	Winner’s	Curse	[3].	

Methods	 have	 been	 provided	 for	 correcting	 this	 bias	 [1],	 and	we	 describe	 those	methods	 here	 as	 they	 are	

relevant,	and	we	adapt	them	to	our	replication	paradigm.	In	[1],	the	following	approximation	of	the	likelihood	

of	the	effect	size	is	provided,	conditioned	on	the	observations	of	the	study	and	conditioned	on	the	truth	of	the	

alternate	hypothesis:	

	

𝐿 𝛽5 𝛽, 𝜎, 𝑁, 𝐻7, 𝛼 ≈ 9 :;;	:,<
= 	:;,<,>,?

.	

Equation	2	

	

Here	𝜑 𝑥; 𝜇, 𝜎 	is	the	density	function	of	a	normal	distribution	with	mean	μ	and	standard	deviation	σ	evaluated	

at	x.	This	likelihood,	as	a	function	of	 𝛽5, 𝛽 	is	supported	on	the	set:	



	 β',	β 		:	sign 𝛽5 	=	sign 𝛽 ,	 𝛽 𝜎 > 	𝑔 1 − 𝛼 2 ;𝑁 − 2 	 .	

Equation	3	

And	so	for	the	i-th	association	in	our	study,	if	we	observe	an	effect	size	of	𝛽i	and	a	standard	error	of	𝜎i	in	the	

discovery	cohort,	and	if	the	size	of	the	discovery	cohort	is	𝑁J,	and	if	the	significance	level	of	the	discovery	is	α,	

then	in	[1]	the	winners’	curse	corrected	effect	size	is	𝛽KL	and	is	given	as	follows:	

	

𝛽KL	=	 argmin
:;

𝐿 𝛽5 𝛽i	, 𝜎i	, 𝑁J, 𝐻7, 𝛼 .	

Equation	4	

	 	
Supplementary	Note	3;	Figure	1:	Winners’	curse	corrected	effect	sizes.	Left)	The	y-axis	shows	the	

winners’	curse	corrected	effect	sizes	for	the	1,262	associations	reported	in	Supplementary	Table	5	and	
the	x-axis	shows	the	power	to	replicate	the	association	in	the	N	=	3,456	replication	cohort.	Right)	The	
action	of	the	winners’	curse	correction	is	shown;	the	x-axis	shows	the	effect	sizes	before	correction,	and	

the	y-axis	shows	the	effect	sizes	after	correction.	Zeros	in	the	corrected	effect	sizes	indicate	loss	of	
significance	in	the	discovery	cohort.	

As	in	[2],	We	compute	these	winners’	curse	corrected	effect	sizes	𝛽KL	using	Nelder—Mead	optimization	[4].	The	

action	of	this	correction	is	shown	above	in	Supplementary	Note	3;	Figure	1.	Using	these	winners’	curse	corrected	

effect	sizes,	we	then	compute	an	unbiased	estimate	of	the	expected	number	of	associations	that	replicate	at	

nominal	significance	in	the	replication	cohort:	

	

𝐸 #replications|𝐻7 = 𝑝 𝛽KL, 𝜎iY, 𝑁Y, 0.05i .	

Equation	5	

Here	𝜎iY	is	the	observed	standard	error	in	the	replication	cohort,	and	𝑁Y	is	the	size	of	the	replication	cohort.	

Thus,	Equation	5	provides	a	post-hoc	winners’	curse	corrected	power	analysis	to	examine	the	expected	

number	of	replicated	clusters.	
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Condition	 Predicted	replications	 Actual	replications	

N	=	930	 486	 455	

N	=	3,456	 740	 844	

N	=	3,456,	singleton	clusters	 72	 68	

N	=	3,456,	clusters	 161	 148	

Supplementary	Note	3;	Table	1:	Predicted	replications	from	post-hoc	winners’	curse	corrected	power	
analysis	compared	to	actual	number	of	replications	in	various	replication	conditions.	The	number	of	
replications	we	actually	find	are	less	than	what	would	be	predicted	under	the	alternate	hypothesis	for	

all	conditions	except	N	=	3,456.	

Using	Equation	5,	we	calculated	that	the	expected	number	of	replications	under	the	alternate	hypothesis	among	

the	1,262	associations	listed	in	Supplementary	Table	5,	and	found	that	for	the	N	=	930	replication	cohort,	we	

expected	 486	 replications	 (we	 found	455	 in	 the	 experiment).	 And,	 for	 the	N	 =	 3,456	 replication	 cohort,	we	

expected	740	replications	(and	we	found	844	in	the	experiment).	

	

While	the	number	of	replicated	associations	we	found	for	N	=	3,456	is	in	excess	of	the	expectation,	we	note	that	

linkage	 disequilibrium	 among	 SNPs	 and	 correlation	 among	 phenotypes	 act	 to	 increase	 the	 variance	 of	 the	

estimate	of	this	expectation.	Associations	that	are	all	in	the	same	“cluster”	tend	to	all	replicate	or	fail	to	replicate	

more	 or	 less	 together.	 To	 understand	 this	 variance,	 we	 restricted	 Equation	 5	 to	 sum	 only	 over	 the	 314	

“singleton”	clusters	—	clusters	that	contained	only	a	single	association,	and	therefore	exhibit	less	correlation.	

We	calculate	that	in	the	N	=	3,456	replication	cohort,	the	expected	number	of	replicated	singleton	clusters	was	

72	(we	found	68	in	the	experiment).	

	

We	also	used	Equation	5	to	calculate	the	expected	number	of	replicated	clusters	in	the	N	=	3,456	replication	

cohort.	 Assuming	 independence	 among	 the	 associations,	 the	 expected	 number	 of	 replicated	 clusters	 is	 as	

follows	(a	‘noisy	or’):	

	

𝐸 #replications = 1 − 1 − 𝑝 𝛽KL, 𝜎iY, 𝑁Y, 0.05K	]	^_` .	

Equation	6	

Here	𝐶 	 is	the	set	of	 indices	of	the	associations	assigned	to	the	 j-th	cluster.	We	calculated	that	the	expected	

number	of	replicated	clusters	was	161	(and	we	found	148	in	the	experiment).	So,	even	though	the	number	of	

replications	we	find	in	the	raw	associations	in	the	N	=	3,456	replication	cohort	is	larger	than	what	is	predicted	

by	post-hoc	winners’	curse	corrected	power	analysis;	when	we	aggregate	over	clusters,	or	examine	singleton	

clusters	only,	or	examine	the	N	=	930	replication	cohort,	we	replicate	fewer	associations	than	what	is	predicted	

by	post-hoc	winners’	curse	corrected	power	analysis.	These	results	are	tabulated	in	Supplementary	Note	3;	Table	

1.	 This	 analysis	 therefore	 suggests	 that	our	 results	 are	not	outside	of	 the	 realm	of	what	 could	be	expected	

through	a	post-hoc	power	analysis	of	the	replication	cohorts.	
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