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Appendix 1: Estimation and inference for fixed and

random effects models

Let αj represent the pleiotropic effect of SNP j on the outcome not via the expo-
sure and let µα and σ2

α denote the sample mean and variance, respectively, of all
L pleiotropic effects. Suppose that the pleiotropic effects collectively satisfy the In-
SIDE assumption, and that the mean pleiotropic effect µα = 0. This is referred to
as ‘balanced’ pleiotropy, and will induce heterogeneity amongst the ratio estimates.
If heterogeneity is detected, inferences about the causal effect need to be adjusted
to take this additional uncertainty into account, by assuming either by an additive
random effects model [1] or a multiplicative random effects model [2]:

Additive pleiotropy model: Γ̂j = βγj +
√
σ2
α + σ2

Y jεj (1)

Multiplicative pleiotropy model: Γ̂j = βγj +
√

1 + σ2
ασY jεj.

= βγj + φ
1
2σY jεj. (2)

In line with current practice in two sample summary data Mendelian random-
ization [3, 4], we will focus predominantly on the multiplicative model 2, because it
is automatically fitted by regression software. Specifically, we describe how to ob-
tain IVW estimates (with associated standard errors and confidence intervals) and Q
statistics using 1st order, 2nd order, iterative and exact weights. We will then con-
clude by discussing how our methods can be easily adapted for the additive random
effects case. Note that, when there is no heterogeneity due to pleiotropy, σ2

α = αj =
0, φ=1 and (1) equals (2) (i.e. the fixed effect model).

The multiplicative case

First define the following generalized Q statistic for the multiplicative random effects
model:

Q(w(β, φ), β) =
L∑
j=1

wj(β, φ)(β̂j − β)2, (3)

wj(β, φ) =

(
φσ2

Y j + β2σ2
Xj

γ̂2j

)−1

(4)

1st order, 2nd order and iterative weights

The 1st order IVW estimate β̂IV W under a fixed effect model is equivalent to solving:

∂Q(w(0, 1), β)

∂β
= 0 (5)
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Although β is set to zero in the above weight formula, this is actually a bi-product
of 1st order weights making the NOME assumption (σ2

Xj=0). This yields the standard
analytic solution

β̂IV W =

∑L
j=1wj(0, 1)β̂j∑L
j=1wj(0, 1)

. (6)

The over-dispersion parameter is then calculated as

φ̂ =
Q(w(0, 1), β̂IV W )

L− 1
, (7)

That is, the ratio of the 1st order Q statistic and its degrees of freedom under the
null hypothesis of no over-dispersion (φ=1). A general formula for the standard error
for β̂IV W1 is given by

SE(β̂IV W1) =

√√√√ φ̂∑L
j=1wj(0, 1)

(8)

Under a fixed effect model, the standard error is calculated by fixing φ̂ to 1 in
equation 8. Under a multiplicative random effects model we fix φ̂ to be the maximum
of 1 and its estimated value in 7, to ensure that the random effects IVW estimate is
no more precise than the fixed effect estimate. Symmetric ninety-five percent con-
fidence intervals for the causal effect are obtained as β̂IV W ± t.975,L−1 × SE(β̂IV W1)
where t.975,L−1 is the 97.5th percentile of student’s t-distribution with L − 1 degrees
of freedom.

In order to obtain the IVW estimate using 2nd order weights (as well as Q statis-
tics and standard errors under fixed and multiplicative random effects models) we
replace wj(0, 1) with wj(β̂j, 1) in equations 5, 6, 7 and 8. That is, the only difference
between the 1st order and 2nd order IVW estimate is that we are replacing the guess
β=0 with β=β̂j in the weight function.

In order to obtain the ith iterative IVW estimate (as well as Q statistics and standard
errors under fixed and random effects models) we replace wj(0, 1) with wj(β̂IV W (i−1), 1)
in equations 5, 6, 7 and 8, where

• β̂IV W (i−1) is the IVW estimate obtained from the ith iteration;

• β̂IV W (0) is the IVW estimate obtained using 1st order weights.

That is, the only difference between the 1st order IVW estimate and the ith
iterative IVW estimate is that we are replacing the guess β=0 with β=β̂IV W (i−1) in
the weight function.

3



Exact weights

Just as for 1st or 2nd order weighting, our method for calculating β̂IV W using iterative
weights preserves the property that the estimate remained the same under either a
fixed or multiplicative random effects model. This also means that it produces IVW
estimates and Q statistics that closely mirror those obtained under 1st order weighting
with strong instruments, but leads to improvements in performance in the presence
of weak instruments whilst being stochastically similar. Exact weights produce IVW
estimates that can be very different with weak instruments, because a much more
aggressive bias correction is enacted. Furthermore, the IVW estimate it produces is
different under a fixed and multiplicative random effects model.

Fixed effect model: φ = 1

The exact IVW estimate under a fixed effect model (φ=1), is the value of β that solves
(or minimises):

∂Q(w(β, 1), β)

∂β
= 0 (9)

Note the difference between equation 9 and 5 is that the weight given to the jth
contribution is an explicit function of β, and therefore directly affects the minimisa-
tion. We solve 9 using numerical methods. Plugging in the estimate obtained from
(9) into the Q statistic, Q(w(β̂IV W , 1), β̂IV W ) then provides an exact test of the null
hypothesis of no heterogeneity. An estimate for the standard error of β̂IV W can be
obtained by plugging wj(β̂IV W , 1) into equation (8) with φ̂ set to 1 in order to obtain
p-values and symmetric confidence intervals as above. Alternatively, a 95% confidence
interval for β̂IV W can be obtained directly by inverting the Q statistic to find the set:

CI(β̂IV W , δ) = {β : Q(w(β, 1), β) ≤ χ2
L−1(0.95)} (10)

Where χ2
L−1(0.95) is the 95th percentile of a chi-squared distribution with L − 1

degrees of freedom.

Random effects model: joint estimation of β and φ

Joint estimation of the causal parameter β and the scale parameter φ under our
stated model is known to be a challenging problem. For example, Zhao et al. [5] show
that when the additive random effects model (1) is assumed, the maximum profile-
likelihood estimates for β σ2

α are biased. Translating this to our multiplicative model,
this means that Q(w(β, φ), β) is not minimised at the true value of (β, φ), because
as φ → ∞, Q(w(β, φ), β) → 0. Zhao et al. [5] follow the approach of McCullagh
and Tibrishani [6] by instead maximising an ‘adjusted’ profile likelihood to obtain
bias adjusted estimates for β and σ2

α. In this paper we take a simpler but analogous
approach, by finding the value of φ that solves (or minimises):

Q(w(β, φ), β)− (L− 1) = 0, (11)
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subject to the constraint that

∂Q(w(β, φ), β)

∂β
= 0. (12)

Specifically, solving equations 11 and 12 is approximately equivalent to solving equa-
tions (4.2) and (4.3) in [5], when translated to the multiplicative random effects model
framework. In practice, we find restricting the upper and lower bound for φ to be
between its estimate when using 2nd order weights and its estimate when using 1st
order weights leads to stable and reliable estimates. This is because 1st order and 2nd
order weights systematically under- and over-estimate the true value of φ respectively.

Zhao et al. [5] derive an expression an expression for their asymptotic variance of
the causal effect after maximisation of the adjusted profile score. The stability of this
variance estimate is then improved by incorporating additional penalized regression
methods to down-weight outliers. It is not possible to obtain a confidence interval
for the causal parameter β using the inversion method - as in equation 10 - when
over-dispersion is allowed. This is because it ignores uncertainty in the estimation of
φ. Instead we obtain an estimate for the variance of β̂IV W using a non-parametric
bootstrap algorithm. An equivalent parametric bootstrap algorithm was found to
perform poorly with weak instruments, which is the very scenario we want it to work
well. This is because generating boostrapped SNP-exposure associations γ̂∗j from a
N(γ̂j, σ

2
Xj) distribution means that they contain twice as much uncertainty as the

original estimates. This in turn leads to stronger regression dilution bias and under-
estimation of the variance of β̂IV W . Our non-parametric estimation and bootstrap
variance algorithm generally works well, but works least well when three factors come
together: (1) the causal null β=0 is true (2) when there are few genetic instruments
and (3) when the instruments are extremely weak.

Suggested adaptation to an additive random effects

model

Translating the methods described from a multiplicative to an additive random effects
model is straightforward. First define the following generalized Q statistic under the
additive random effects model (1):

Q(w∗(β, σ2
α), β) =

L∑
j=1

w∗
j (β, σ

2
α)(β̂j − β)2, (13)

w∗
j (β, σ

2
α) =

(
σ2
Y j + β2σ2

Xj + σ2
α

γ̂2j

)−1

(14)

Note that now the second argument of the weight function is σ2
α instead of φ

(importantly, under a fixed effect model σ2
α = 0 but φ=1).
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Fixed effect model

Under a fixed effect model, point estimates, standard errors and confidence intervals
for the 1st order, 2nd order and iterative and exact IVW estimate (and their associated
Q statistics) are identical to that previously described.

Random effects model: 1st order, 2nd order and iterative
weights

When Cochran’s Q statistic detects heterogeneity and a random effects model is
adopted, it is common practice to estimate the σ2

α using the DerSimonian and Laird
method of moments estimator [1], which we denote by σ̂2

α. The random effects esti-
mate is then

β̂IV W =

∑L
j=1w

∗
j (β, σ̂

2
α)β̂j∑L

j=1w
∗
j (β, σ̂

2
α)

, (15)

where w∗
j (β, σ

2
α) equals: w∗

j (0, σ̂
2
α) with 1st order weighting; w∗

j (β̂j, σ̂
2
α) with 2nd order

weighting; w∗
j (β̂IV W (i), σ̂

2
α) for the (i+1)th iteration modified 2nd order weights. The

standard error of the random effects estimate in each case is then√
1∑L

j=1w
∗
j (u, σ̂

2
α)

(16)

where u is replaced with 0, β̂j and β̂IV W (i) respectively.

Random effects model: Exact modified 2nd order weights

In this case we solve a near-identical pair of equations to the multiplicative case,
namely

Q(w∗(β, σ2
α), β)− (L− 1) = 0, (17)

subject to the constraint that

∂Q(w∗(β, σ2
α), β)

∂β
= 0, (18)

and where σ2
α is constrained to lie between the DerSimonian and Laird estimate ob-

tained using 1st and 2nd order weighting.
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Appendix 2: Simulating summary data with no het-

erogeneity due to pleiotropy

Two-sample summary data MR studies comprising L SNP-exposure and SNP outcome
association estimates (Γ̂j, γ̂j) were generated from the following normal models:

γ̂j ∼ N(γj, σ
2
Xj), Γ̂j ∼ N(βγj, σ

2
Y j) (19)

given parameter vector values for (γj, σ
2
Xj, σ

2
Y j) and the causal parameter β. Under

these models, the F -statistic for SNP j can be approximated by γ̂2j /σ
2
Xj. Data gener-

ated under model (19) furnishes a set of ratio estimates between which no additional
variation should exist as their F -statistics grows large (because NOME is satisfied), or
if the causal effect (β) equals zero. To highlight this the γj parameters were simulated
from a Uniform(0.34,1.1) distribution and σXj was simulated from a Uniform(0.06,UB)
distribution. By varying UB between 0.095 and 1 we were able to mimic MR studies
with weak instruments (a mean F -statistic of 10) and strong instruments (a mean
F -statistic of 100). Data were simulated for a range of causal effects and, across all
scenarios, σY j was simulated from a Uniform(0.015,0.11) distribution.

Testing for heterogeneity under no pleiotropy: L=10 and 100
variants

Mean 1st order wj 2nd order wj Modified wj
Iterative Exact

F Q T1E(Q) Q T1E(Q) Q T1E(Q) Q T1E(Q)

No heterogeneity, β=0
100 9.1 0.055 8.7 0.038 9.1 0.054 9.1 0.054
61 9.0 0.051 8.2 0.023 9.0 0.050 9.0 0.050
40 9.0 0.051 7.7 0.013 9.0 0.050 9.0 0.050
25 9.0 0.049 6.6 0.003 8.9 0.046 8.9 0.046
10 8.9 0.050 4.5 0.000 8.6 0.043 8.4 0.038

No heterogeneity, β=0.05
100 9.1 0.052 8.6 0.036 9.0 0.050 9.0 0.050
61 9.2 0.054 8.2 0.023 9.0 0.048 9.0 0.048
40 9.3 0.061 7.6 0.015 9.0 0.053 9.0 0.052
25 9.7 0.073 6.6 0.006 9.0 0.051 8.9 0.048
10 11.7 0.167 4.9 0.001 9.6 0.082 8.9 0.052

No heterogeneity, β=0.1
100 9.2 0.058 8.5 0.032 9.0 0.050 9.0 0.050
61 9.6 0.070 8.2 0.023 9.0 0.049 9.0 0.048
40 10.1 0.090 7.6 0.014 9.0 0.049 8.9 0.047
25 11.8 0.165 6.8 0.007 9.2 0.055 9.0 0.046
10 19.5 0.480 5.6 0.008 10.9 0.134 8.9 0.048

Table 1: Mean Q statistic and type I error rate (T1E) of 1st order, 2nd order,
iterative and exact weights. Results calculated over 10,000 simulated data sets of
L=10 variants. Type I error rate (T1E(Q)) refers to the proportion of times Q is
greater than the upper 95th percentile of a χ2

9 distribution.
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Mean 1st order wj 2nd order wj Modified wj
Iterative Exact

F Q T1E(Q) Q T1E(Q) Q T1E(Q) Q T1E(Q)

No heterogeneity, β=0
100 99.0 0.050 94.4 0.017 99.0 0.050 99.0 0.050
61 98.9 0.050 90.3 0.007 98.9 0.050 98.9 0.050
40 98.9 0.049 83.9 0.001 98.8 0.049 98.8 0.049
25 99.0 0.050 72.9 0.000 98.9 0.049 98.9 0.049
10 99.0 0.047 50.8 0.000 98.6 0.045 98.4 0.043

No heterogeneity, β=0.05
100 99.9 0.059 94.4 0.019 99.0 0.053 99.0 0.053
61 100.6 0.064 90.2 0.006 98.9 0.048 98.8 0.048
40 102.8 0.087 84.4 0.001 99.3 0.055 99.2 0.054
25 107.1 0.148 73.9 0.000 99.4 0.055 98.8 0.048
10 130.9 0.629 56.4 0.000 105.7 0.135 98.6 0.048

No heterogeneity, β=0.1
100 102.6 0.081 94.4 0.019 99.1 0.046 99.0 0.045
62 105.8 0.127 90.2 0.008 98.8 0.048 98.6 0.047
40 113.2 0.265 84.9 0.002 99.3 0.053 98.9 0.049
25 132.5 0.651 76.6 0.000 100.9 0.069 99.3 0.052
10 227.5 0.999 67.9 0.001 112.3 0.261 98.8 0.045

Table 2: Mean Q statistic and type I error rate (T1E) of 1st order, 2nd order,
iterative and exact weights. Results calculated over 10,000 simulated data sets of
L=100 variants. Type I error rate (T1E(Q)) refers to the proportion of times Q is
greater than the upper 95th percentile of a χ2

99 distribution.

Appendix 3: Power to detect heterogeneity under

an additive random effects model
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Figure 1: Power of Cochran’s Q statistic to detect heterogeneity as a function of the
pleiotropy standard deviation (σα) and number of SNPs (L) using 1st order, 2nd order
iterative and exact weights under an additive pleiotropy model.

Appendix 4: Detecting outliers using individual com-

ponents of Q

10,000 summary associations are simulated for 25 SNPs for a range of mean F -
statistics, a causal effect of 0.05 and under the assumption of no heterogeneity due to
pleiotropy. That is, just as for rows 6-10 in Table 1 of the main paper. Each data set
of 25 SNPs is then augmented with a single outlying SNP (with a fixed pleiotropic
effect) which almost triples the magnitude of the observed heterogeneity across all 26
SNPs, as measured by Cochran’s Q. Table 3 shows, for each weighting scheme: the
mean Q statistic, the median and mean number of ‘outliers’ detected at the 5% level
and the proportion of times that the true outlier is detected (P ∗) as F is varied from
100 to 10. Figure 2 shows equivalent box plots of the outlier data, to highlight further
summary quantities such as the inter-quartile range.

We would expect approximately 25×0.05 = 1.25 of the normal, non-heterogeneous
SNPs to be declared outliers by chance at the 5% significance level, and hope that
the true outlier is detected as often as possible, giving an ideal mean total of 2.25. As
the mean F -statistic decreases, the total number of outliers detected using 1st order
weights steadily increases beyond this value (although the probability of detecting
the true outlier stays constant at ≈ 95%). By contrast, the total number of outliers
detected using 2nd order weights substantially decreases, as well as the ability to de-
tect the true outlier. For example, when F is 10, the true outlier is detected in less
than 30% of cases. The performance of modified 2nd order weights is much more
stable across the range of instrument strengths, with the median and mean number
of outliers never increasing beyond 2 and 3 respectively. However, in this case it is
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the iterative rather than the exact weights that appear to perform best. For example,
when the mean F -statistic is 10 the power to detect the true outlier drops to only 87%
using the exact approach, but stays at 94% for the iterative approach. Moreover, the
box plots in Figure 2 show that the number of outliers detected across the simulations
is much more variable for the exact, compared to the iterative implementation.

Mean 1st order wj 2nd order wj Modified wj
Iterative Exact

‘Outliers’ detected ‘Outliers’ detected ‘Outliers’ detected ‘Outliers’ detected
F Q (Median,Mean,P ∗) Q (Median,Mean,P ∗) Q (Median,Mean,P ∗) Q (Median,Mean,P ∗)

No heterogeneity for 25 SNPs + 1 outlier, β=0.05
100 67.6 (2,2.54,0.94) 42.3 (2,1.98,0.93) 64.1 (2,2.44,0.94) 63.4 (2,2.69,0.94)
61 68.5 (2,2.55,0.94) 37.0 (2,1.78,0.90) 62.8 (2,2.38,0.94) 61.4 (2,2.77,0.94)
40 69.6 (2,2.58,0.94) 31.6 (1,1.50,0.81) 60.4 (2,2.32,0.94) 57.9 (2,2.82,0.94)
24 71.2 (2,2.71,0.95) 25.8 (1,1.10,0.62) 56.8 (2,2.25,0.94) 52.6 (2,2.82,0.94)
10 80.0 (3,3.27,0.95) 17.5 (0,0.53,0.28) 53.2 (2,2.23,0.94) 41.1 (2,2.58,0.87)

Table 3: The number of outliers detected at the 5% level by Cochran’s Q statistic
when using 1st order, 2nd order, iterative and exact weights for MR summary data
containing 25 non-heterogeneous SNPs and 1 outlier.
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Figure 2: Box plots summarising the total number of outliers detected by Cochran’s
Q statistic using 1st order, 2nd order, iterative and exact weights when the mean F -
statistic is varied betwen 100 (top-left) and 10 (bottom-right). Each box shows the 1st
quartile, median line and 3rd quartile, so that its height represent the inter-quartile
range. Box ‘whiskers’ representing the full outlier range are also shown.
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Appendix 5: Estimator performance: Results for

L=10 and 100 under a fixed effect model (no het-

erogeneity)

Mean 1st order wj 2nd order wj Modified wj
Iterative Exact

F β̂IV W (SE); CF β̂IV W (SE); CF β̂IV W (SE); CF β̂IV W (SE);CF1 CF2

No Heterogeneity, β=0
100 0.000 (0.018); 0.948 0.000 (0.018); 0.950 0.000 (0.018); 0.949 0.000 (0.019); 0.976 0.957
62 0.000 (0.018); 0.948 0.000 (0.018); 0.949 0.000 (0.018); 0.948 0.000 (0.019); 0.974 0.962
40 0.000 (0.018); 0.951 0.000 (0.017); 0.948 0.000 (0.018); 0.952 0.000 (0.019); 0.974 0.963
25 0.000 (0.018); 0.947 0.000 (0.016); 0.941 0.000 (0.018); 0.951 0.000 (0.019); 0.968 0.967
10 0.000 (0.016); 0.947 0.000 (0.012); 0.924 0.000 (0.016); 0.954 0.000 (0.019); 0.892 0.982

No Heterogeneity, β=0.05
100 0.050 (0.018); 0.949 0.049 (0.018); 0.951 0.050 (0.019); 0.951 0.050 (0.019); 0.973 0.956
61 0.049 (0.018); 0.947 0.048 (0.018); 0.947 0.049 (0.019); 0.950 0.050 (0.019); 0.975 0.963
40 0.049 (0.018); 0.947 0.046 (0.018); 0.942 0.049 (0.019); 0.952 0.051 (0.019); 0.972 0.963
25 0.046 (0.019); 0.936 0.042 (0.017); 0.904 0.047 (0.019); 0.942 0.051 (0.020); 0.963 0.970
10 0.034 (0.018); 0.801 0.028 (0.014); 0.615 0.035 (0.019); 0.829 0.048 (0.023); 0.860 0.976

No Heterogeneity, β=0.1
100 0.099 (0.019); 0.944 0.097 (0.019); 0.945 0.099 (0.019); 0.948 0.100 (0.020); 0.977 0.962
61 0.099 (0.019); 0.935 0.095 (0.019); 0.938 0.099 (0.020); 0.947 0.101 (0.020); 0.972 0.962
40 0.097 (0.019); 0.931 0.091 (0.019); 0.919 0.097 (0.020); 0.945 0.101 (0.021); 0.972 0.969
25 0.093 (0.020); 0.902 0.084 (0.018); 0.840 0.093 (0.022); 0.932 0.102 (0.023); 0.961 0.972
10 0.068 (0.022); 0.662 0.058 (0.017); 0.418 0.072 (0.024); 0.755 0.103 (0.028); 0.904 0.980

Table 4: Mean causal estimate β̂IV W , standard error (SE) and coverage frequency
(CF, CF1 and CF2) of the 95% confidence interval when using 1st order, 2nd order
iterative and exact weights. L=10
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Mean 1st order wj 2nd order wj Modified wj
Iterative Exact

F β̂IV W (SE); CF β̂IV W (SE); CF β̂IV W (SE); CF β̂IV W (SE);CF1 CF2

No Heterogeneity, β=0
100 0.000 (0.005); 0.950 0.000 (0.005); 0.950 0.000 (0.005); 0.950 0.000 (0.005); 0.950 0.948
61 0.000 (0.005); 0.949 0.000 (0.005); 0.949 0.000 (0.005); 0.949 0.000 (0.005); 0.948 0.947
40 0.000 (0.005); 0.947 0.000 (0.005); 0.945 0.000 (0.005); 0.948 0.000 (0.005); 0.942 0.947
25 0.000 (0.005); 0.951 0.000 (0.005); 0.941 0.000 (0.005); 0.952 0.000 (0.005); 0.928 0.946
10 0.000 (0.004); 0.948 0.000 (0.003); 0.930 0.000 (0.004); 0.952 0.000 (0.004); 0.781 0.950

No Heterogeneity, β=0.05
100 0.050 (0.005); 0.948 0.049 (0.005); 0.941 0.050 (0.005); 0.949 0.050 (0.005); 0.951 0.943
61 0.049 (0.005); 0.937 0.047 (0.005); 0.912 0.049 (0.006); 0.941 0.050 (0.006); 0.944 0.947
40 0.048 (0.005); 0.928 0.045 (0.005); 0.829 0.048 (0.006); 0.935 0.050 (0.006); 0.944 0.942
25 0.045 (0.005); 0.836 0.040 (0.005); 0.498 0.046 (0.006); 0.865 0.050 (0.006); 0.929 0.948
10 0.031 (0.005); 0.095 0.026 (0.004); 0.003 0.033 (0.005); 0.192 0.050 (0.006); 0.856 0.948

No Heterogeneity, β=0.1
100 0.099 (0.006); 0.940 0.097 (0.006); 0.916 0.099 (0.006); 0.947 0.100 (0.006); 0.950 0.951
61 0.098 (0.006); 0.916 0.094 (0.006); 0.819 0.098 (0.006); 0.934 0.100 (0.006); 0.948 0.949
40 0.096 (0.006); 0.856 0.090 (0.006); 0.575 0.096 (0.006); 0.895 0.100 (0.006); 0.946 0.947
25 0.090 (0.006); 0.612 0.082 (0.006); 0.141 0.092 (0.007); 0.749 0.100 (0.007); 0.936 0.945
10 0.063 (0.007); 0.006 0.053 (0.005); 0.000 0.072 (0.007); 0.052 0.101 (0.008); 0.889 0.960

Table 5: Mean causal estimate β̂IV W , standard error (SE) and coverage frequency
(CF, CF1 and CF2) of the 95% confidence interval when using 1st order, 2nd order,
iterative and exact weights. L=100
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Appendix 6. Estimator performance: Results for

L=10 and 100, multiplicative random effects model

Mean 1st order wj 2nd order wj Modified wj
Iterative Exact

F β̂IV W (SE); CF β̂IV W (SE); CF β̂IV W (SE); CF β̂IV W (SE);CF φ̂

Heterogeneity, β=0
100 0.000 (0.026); 0.949 0.000 (0.025); 0.950 0.000 (0.026); 0.950 0.000 (0.027); 0.944 2.034
61 0.000 (0.026); 0.947 0.000 (0.024); 0.948 0.000 (0.026); 0.949 0.000 (0.028); 0.947 2.030
40 0.000 (0.026); 0.947 0.000 (0.024); 0.945 0.000 (0.026); 0.950 0.000 (0.029); 0.946 2.023
24 0.000 (0.025); 0.948 0.000 (0.022); 0.939 0.000 (0.025); 0.953 0.000 (0.034); 0.952 1.995
10 -0.001 (0.022); 0.951 0.000 (0.016); 0.922 -0.001 (0.023); 0.958 0.002 (0.162); 0.973 1.912

Heterogeneity, β=0.05
100 0.050 (0.026); 0.947 0.048 (0.025); 0.948 0.050 (0.026); 0.948 0.050 (0.027); 0.943 2.031
61 0.050 (0.026); 0.948 0.047 (0.025); 0.946 0.050 (0.026); 0.951 0.051 (0.028); 0.947 2.012
40 0.049 (0.026); 0.949 0.044 (0.024); 0.941 0.049 (0.026); 0.953 0.051 (0.029); 0.950 2.027
25 0.046 (0.026); 0.940 0.039 (0.022); 0.906 0.047 (0.027); 0.945 0.051 (0.035); 0.953 2.028
10 0.034 (0.024); 0.859 0.027 (0.018); 0.678 0.036 (0.025); 0.873 0.048 (0.163); 0.972 1.982

Heterogeneity, β=0.1
100 0.099 (0.026); 0.947 0.096 (0.026); 0.948 0.099 (0.027); 0.950 0.100 (0.028); 0.944 2.035
61 0.099 (0.026); 0.947 0.093 (0.026); 0.946 0.099 (0.027); 0.956 0.101 (0.028); 0.949 2.027
40 0.098 (0.026); 0.942 0.089 (0.025); 0.924 0.098 (0.028); 0.950 0.101 (0.030); 0.949 2.029
25 0.093 (0.027); 0.921 0.080 (0.024); 0.846 0.093 (0.029); 0.940 0.101 (0.037); 0.952 2.050
10 0.068 (0.027); 0.728 0.054 (0.020); 0.453 0.073 (0.030); 0.809 0.099 (0.134); 0.962 2.112

Table 6: Mean causal estimate β̂IV W , standard error (SE) and coverage frequency
(CF) of the 95% confidence interval when using 1st order, 2nd order, iterative and
exact weights. L=10. φ̂ = variance inflation factor.
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Mean 1st order wj 2nd order wj Modified wj
Iterative Exact

F β̂IV W (SE); CF β̂IV W (SE); CF β̂IV W (SE); CF β̂IV W (SE);CF φ̂

Heterogeneity, β=0
100 0.000 (0.008); 0.951 0.000 (0.007); 0.950 0.00 (0.008); 0.951 0.00 (0.008); 0.944 2.001
61 0.000 (0.008); 0.953 0.000 (0.007); 0.953 0.000 (0.008); 0.953 0.00 (0.008); 0.945 2.001
40 0.000 (0.008); 0.949 0.000 (0.007); 0.945 0.000 (0.008); 0.950 0.00 (0.008); 0.942 2.000
25 0.000 (0.007); 0.949 0.000 (0.006); 0.940 0.000 (0.007); 0.950 0.00 (0.008); 0.939 1.999
10 0.000 (0.006); 0.952 0.000 (0.004); 0.927 0.000 (0.006); 0.957 0.00 (0.011); 0.950 1.987

Heterogeneity, β=0.05
100 0.050 (0.008); 0.949 0.048 (0.007); 0.942 0.050 (0.008); 0.950 0.05 (0.008); 0.943 1.996
61 0.049 (0.008); 0.943 0.046 (0.007); 0.907 0.049 (0.008); 0.946 0.05 (0.008); 0.938 1.998
40 0.048 (0.008); 0.934 0.043 (0.007); 0.820 0.048 (0.008); 0.941 0.05 (0.008); 0.940 2.004
25 0.045 (0.007); 0.893 0.038 (0.007); 0.536 0.046 (0.008); 0.914 0.05 (0.008); 0.946 1.998
10 0.031 (0.007); 0.229 0.023 (0.005); 0.009 0.033 (0.007); 0.394 0.05 (0.011); 0.942 1.995

Heterogeneity, β=0.1
100 0.099 (0.008); 0.942 0.095 (0.008); 0.908 0.099 (0.008); 0.948 0.10 (0.008); 0.942 2.000
61 0.098 (0.008); 0.931 0.092 (0.008); 0.812 0.098 (0.008); 0.943 0.10 (0.008); 0.940 2.004
40 0.096 (0.008); 0.904 0.087 (0.008); 0.573 0.096 (0.008); 0.930 0.10 (0.008); 0.942 1.998
25 0.090 (0.008); 0.742 0.077 (0.007); 0.162 0.092 (0.009); 0.842 0.10 (0.009); 0.941 2.002
10 0.063 (0.008); 0.025 0.049 (0.006); 0.000 0.072 (0.009); 0.167 0.10 (0.013); 0.947 2.003

Table 7: Mean causal estimate β̂IV W , standard error (SE) and coverage frequency
(CF) of the 95% confidence interval when using 1st order, 2nd order, iterative and
exact weights. L=100. φ̂ = variance inflation factor.
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Appendix 7: Power to detect a causal effect: L=10,25

and 100

Mean β 1st order wj 2nd order wj Modified wj
F Iterative Exact

100 0.00 0.054 0.053 0.054 0.058
61 0.00 0.046 0.042 0.044 0.052
40 0.00 0.046 0.046 0.042 0.048
25 0.00 0.058 0.065 0.052 0.049
10 0.00 0.049 0.080 0.046 0.028
100 0.01 0.074 0.072 0.072 0.076
61 0.01 0.068 0.069 0.066 0.072
40 0.01 0.080 0.081 0.076 0.082
25 0.01 0.063 0.066 0.058 0.061
10 0.01 0.060 0.090 0.050 0.030
100 0.02 0.104 0.104 0.101 0.104
61 0.02 0.114 0.114 0.110 0.116
40 0.02 0.117 0.122 0.110 0.114
25 0.02 0.109 0.118 0.100 0.089
10 0.02 0.100 0.134 0.082 0.036
100 0.03 0.211 0.205 0.208 0.198
61 0.03 0.194 0.186 0.188 0.179
40 0.03 0.194 0.194 0.184 0.180
25 0.03 0.168 0.178 0.153 0.140
10 0.03 0.158 0.184 0.128 0.070
100 0.04 0.296 0.290 0.294 0.281
61 0.04 0.286 0.281 0.278 0.268
40 0.04 0.289 0.274 0.270 0.252
25 0.04 0.278 0.280 0.252 0.220
10 0.04 0.204 0.235 0.178 0.093
100 0.05 0.436 0.429 0.432 0.402
61 0.05 0.446 0.432 0.433 0.406
40 0.05 0.422 0.408 0.400 0.384
25 0.05 0.404 0.386 0.380 0.321
10 0.05 0.288 0.292 0.242 0.127

Table 8: Power to detect a causal effect at the 5% significance level as a function of
the causal parameter β and the mean instrument strength using 1st order, 2nd order,
iterative and exact weights. L=10.
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Mean β 1st order wj 2nd order wj Modified wj
F Iterative Exact

100 0.00 0.060 0.058 0.059 0.067
61 0.00 0.046 0.046 0.046 0.056
40 0.00 0.044 0.052 0.044 0.056
25 0.00 0.048 0.048 0.040 0.058
10 0.00 0.053 0.078 0.043 0.036
100 0.01 0.100 0.098 0.098 0.118
61 0.01 0.102 0.099 0.102 0.108
40 0.01 0.098 0.103 0.092 0.110
25 0.01 0.092 0.100 0.086 0.094
10 0.01 0.083 0.110 0.070 0.044
100 0.02 0.246 0.244 0.244 0.258
61 0.02 0.244 0.243 0.241 0.246
40 0.02 0.214 0.212 0.209 0.224
25 0.02 0.236 0.228 0.222 0.219
10 0.02 0.168 0.202 0.146 0.098
100 0.03 0.446 0.434 0.442 0.450
61 0.03 0.451 0.438 0.444 0.438
40 0.03 0.444 0.426 0.436 0.444
25 0.03 0.424 0.415 0.403 0.406
10 0.03 0.317 0.310 0.287 0.178
100 0.04 0.668 0.664 0.668 0.662
61 0.04 0.667 0.660 0.660 0.664
40 0.04 0.680 0.662 0.673 0.665
25 0.04 0.620 0.606 0.608 0.590
10 0.04 0.460 0.470 0.426 0.286
100 0.05 0.853 0.848 0.852 0.839
61 0.05 0.836 0.826 0.834 0.817
40 0.05 0.836 0.812 0.830 0.815
25 0.05 0.804 0.765 0.788 0.770
10 0.05 0.623 0.617 0.608 0.400

Table 9: Power to detect a causal effect at the 5% significance level as a function of
the causal parameter β and the mean instrument strength using 1st order, 2nd order,
iterative and exact weights. L=25.
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Mean β 1st order wj 2nd order wj Modified wj
F Iterative Exact

100 0.00 0.054 0.056 0.054 0.060
61 0.00 0.048 0.045 0.048 0.046
40 0.00 0.044 0.056 0.045 0.060
25 0.00 0.048 0.058 0.046 0.054
10 0.00 0.044 0.068 0.040 0.044
100 0.01 0.268 0.262 0.267 0.278
61 0.01 0.250 0.252 0.250 0.270
40 0.01 0.228 0.224 0.227 0.248
25 0.01 0.238 0.230 0.238 0.238
10 0.01 0.173 0.198 0.158 0.176
100 0.02 0.740 0.738 0.740 0.738
61 0.02 0.705 0.704 0.704 0.709
40 0.02 0.703 0.688 0.702 0.702
25 0.02 0.676 0.654 0.672 0.679
10 0.02 0.522 0.509 0.502 0.496
100 0.03 0.967 0.965 0.966 0.964
61 0.03 0.960 0.956 0.960 0.958
40 0.03 0.957 0.950 0.956 0.952
25 0.03 0.943 0.929 0.940 0.938
10 0.03 0.844 0.811 0.840 0.808
100 0.04 1.000 1.000 1.000 1.000
61 0.04 0.998 0.998 0.998 0.998
40 0.04 0.997 0.996 0.997 0.996
25 0.04 0.999 0.998 1.000 0.998
10 0.04 0.968 0.950 0.966 0.950
100 0.05 1.000 1.000 1.000 1.000
61 0.05 1.000 1.000 1.000 1.000
40 0.05 1.000 1.000 1.000 1.000
25 0.05 1.000 1.000 1.000 1.000
10 0.05 0.992 0.990 0.996 0.992

Table 10: Power to detect a causal effect at the 5% significance level as a function of
the causal parameter β and the mean instrument strength using 1st order, 2nd order,
iterative and exact weights. L=100.
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