
Supplementary Note - GangSTR Model

In order to estimate maximum likelihood genotypes at each repeat from Illumina sequencing data, GangSTR
utilizes a model that combines information from multiple aspects of paired end reads. This note describes
the full GangSTR model.

1 Likelihood Model

1.1 Symbols and Definitions

1.1.1 Model Representation

Our goal is to find the underlying genotype of a diploid individual at a known Tandem Repeat (TR) locus.
For an individual that carries A and B copies of the TR motif on each allele we represent the genotype as

〈A,B〉. Likelihood is represented by L and defined by Equation (1), where
−−−→
Data corresponds to alignment

information. We can interpret L as the probability of observing
−−−→
Data considering an underlying genotype

〈A,B〉.
L = P (

−−−→
Data; 〈A,B〉) (1)

GangSTR computes this probability for different values of A and B according to an optimization algorithm
(see section 2) to find the genotype that maximizes the log-likelihood L.

〈Ã, B̃〉 = arg maxL
= arg max logP (

−−−→
Data; 〈A,B〉)

(2)

1.1.2 Insert Size Distribution

We model the insert size δ with a limited Gaussian random variable ∆ with the following distribution:

f∆(δ) =
1

C
√

2πσ
e−

1
2σ2

(δ−µ)2 ; r ≤ δ ≤ ∞ (3)

In this equation µ is average insert size, σ is insert size standard deviation, C is a normalization constant
to account for limited range of δ, and r is the read length.

Integration of this probability density function arises several times throughout the rest of this document.
We compute these integrals using a helper Gaussian distribution X:

fX(x) =
1√
2πσ

e−
1

2σ2
(x−µ)2 ;−∞ ≤ x ≤ ∞ (4)

and it’s cumulative density function (CDF):

FX(x) =

∫ x

−∞
fX(x)dx (5)

1) For r ≤ a, b ≤ ∞: ∫ b

a

f∆(δ)dδ = F∆(b)− F∆(a)

=
1

C
{FX(b)− FX(a)}
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2) For r ≤ a, b ≤ ∞: ∫ b

a

(δ − µ)f∆(δ)dδ =
1

C
√

2πσ

∫ b

a

(δ − µ)e−
1

2σ2
(δ−µ)2d(δ − µ)

= − σ

C
√

2π
{e−

1
2σ2

(b−µ)2 − e−
1

2σ2
(a−µ)2}

= −σ
2

C
{fX(b)− fX(a)}

1.2 Computation of Log Likelihood

The log likelihood for genotype 〈A,B〉 is calculated using the information extracted from the alignment
file. This information consists of several read pairs ri, that we assume to be independent from each other.
We separate the calculation into a term for information extracted from read-pairs (LP , see section 1.2.1),
and a term corresponding to the number of observed fully repetitive reads (LN , see section 1.2.2):

L = logP (
−−−→
Data; 〈A,B〉) =

LP︷ ︸︸ ︷
log
∏
i

P (ri; 〈A,B〉) +

LN︷ ︸︸ ︷
logP (|FRR|; 〈A,B〉) (6)

1.2.1 Read pair Term

The first term in (6) is calculated by extracting evidence from every informative read pair. Each read pair
belongs to one of the classes of informative reads.

LC = log
∏
i

P (ri; 〈A,B〉)

=
∑
i

logP (ri; 〈A,B〉)

=
∑
i

log
∑
j

P (ri, c
j; 〈A,B〉) (7)

Step (7) shows expansion of probability over all possible read classes, cj. Our definition is such that
P (ri, c

j; 〈A,B〉) is only non-zero when ri belongs to class cj. We denote the specific class that ri belongs
to by ci:

=
∑
i

logP (ri, ci; 〈A,B〉)

=
∑
i

log P (ri|ci; 〈A,B〉)︸ ︷︷ ︸
Read Probability

P (ci; 〈A,B〉)︸ ︷︷ ︸
Class Probability

(8)

Step (8) shows the definition of Read and Class Probability. Read Probability is described by the distribu-
tion of read-pairs in each class of reads (see section 1.4). Class probability corresponds to the abundance
of reads from each class with respect to other classes (see section 1.3).

=
∑
i

log
1

2

{
P (ri|C(ri);A)P (C(ri);A)

+ P (ri|C(ri);B)P (C(ri);B)
}

(9)

Finally, step (9) separates the contribution of each allele A and B assuming reads originate from both
chromosomes with equal probability.
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Supplementary Figure 1: Class probabilities as a function of repeat allele length. Results were
calculated using 3bp long repeat unit, read length=100bp, and fragment length=400bp. Blue=spanning
reads, green=flanking reads, red=enclosing reads, and purple=FRR reads.

1.2.2 Repetitive Read Count Term

The second term in (6) assigns a likelihood to the total number of observed fully repetitive reads (both
on-target and off-target). We use a Poisson distribution with parameter λ to model the number of reads
covering a region of the genome. Large TR expansions cause the FRR count to inflate beyond this average.
Our model assigns a likelihood to the observed number of FRRs. Both on-target (reads aligned to the TR
locus) and off-target (read pairs that are mapped elsewhere) FRRs are included in this term.

LN = logP (|FRR|; 〈A,B〉)

= log
e−λλ|FRR|

|FRR|!
= −λ+ |FRR| · logλ− log

(
|FRR|!

)
We use the sterling approximation to calculate log(|FRR|!) for large |FRR| values:

log
(
n!
)
≈
(
n+

1

2

)
· log(n)− n+

1

2
log(2π) (10)

The Poisson parameter λ models the expected number of observed FRR reads, which is linearly related
to the size of alleles A and B. Assuming uniform coverage Cv, read length r and motif length m we can
calculate λ using (11). The unit step function u(.) ensures alleles shorter than read length have 0 expected
FRR reads.

λ = u(A− r

m
) · Cv(A ·m− r)

2r
+ u(B − r

m
) · Cv(B ·m− r)

2r
(11)

1.3 Class Probability

Class probability describes the probability of a read pair belonging to any specific class, considering uniform
coverage [2]. For any value of underlying allele A, this probability can give an intuition on the relative
abundance of different classes of reads (Supplementary Figure 1).

We use Supplementary Figure 2 as a general diagram for informative read pairs. In this figure, S1

and S2 are the distances of the beginning of each read in the read pair from the origin, which is F base
pairs before the TR locus. The value F corresponds to the size of the flanking region that was used for
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Left Flank Right FlankSTR

S1

∆

F: Flank Length (bp)
L: STR Region Length (bp)
∆: Insert size (bp)
r: read length (bp)

2F+L

S2

r r

Supplementary Figure 2: Depiction of notation for describing GangSTR read classes. Green
reperesents non-repetitive sequence, red represents the repeat region, and blue represents sequence reads.

extracting informative reads surrounding a TR locus of size L base pairs, or A copies of the motif of length
m.

To calculate the class probability for each class of informative reads, we find the probability of S1 and S2

taking different ranges of values. We use the insert size distribution described in section 1.1.2, and assume
the fragments are uniformly distributed (uniform coverage). The following sections describe the process
for each class of informative reads.

1.3.1 Class Probability of Enclosing Reads

Without loss of generality, we assume the first mate in the pair is enclosing. The calculation is similar for
the other mate (Equation (12)). Assuming uniformity of coverage, we use a uniform distribution to find
the probability of a TR region being enclosed in a read.

P (ci = E;A) = P (S1 < F, S1 + r > F + A ·m)

= P (F + A ·m− r < S1 < F )

=
(F )− (F + A ·m− r)

2F + A ·m− 2r

=
(r − A ·m)

2F + A ·m− 2r
(12)
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1.3.2 Class Probability of Spanning Reads

A read pair is classified as spanning if it’s two mates are mapped in the flanking region before and after
the TR locus.

P (ci = S;A) = P (S1 < x, S2 > x+ A ·m− r)

=

∫ 2F+A·m

2r

P (S1 < x, S2 > x+ A ·m− r|∆ = δ)f∆(δ)dδ

=

∫ 2F+A·m

2r

P (S1 < x, S1 + ∆− r > x+ A ·m− r|∆ = δ)f∆(δ)dδ

=

∫ 2F+A·m

2r

P (x+ A ·m−∆ < S1 < x)|∆ = δ)f∆(δ)dδ (13)

=

∫ 2F+A·m

2r

(x)− (x+ A ·m− δ)
2F + A ·m− 2r

u(δ − A ·m)f∆(δ)dδ (14)

=

∫ 2F+A·m

max{2r,A·m}

δ − A ·m
2F + A ·m− 2r

f∆(δ)dδ

Step function u(.) is introduced in (14) to satisfy the condition in (13), x+A ·m−∆ < x, which simplifies
to ∆ > A ·m. This condition is then imposed in the integral limit. We continue the calculation using the
helper integrals from Section 1.1.2.

P (ci = S;A) =

∫ 2F+A·m

max{2r,A·m}

(δ − µ) + µ− A ·m
2F + A ·m− 2r

f∆(δ)dδ

=
1

2F + A ·m− 2r

{
(µ− A ·m)

∫ 2F+A·m

max{2r,A·m}
f∆(δ)dδ

+

∫ 2F+A·m

max{2r,A·m}
(δ − µ)f∆(δ)dδ

}
=

µ− A ·m
C(2F + A ·m− 2r)

[
FX
(
2F + A ·m

)
− FX

(
max{2r, A ·m}

)]
− σ2

C(2F + A ·m− 2r)

[
fX
(
2F + A ·m

)
− fX

(
max{2r, A ·m}

)]
=

1

C(2F + A ·m− 2r)

{
(µ− A ·m)

[
FX
(
2F + A ·m

)
− FX

(
max{2r, A ·m}

)]
− σ2

[
fX
(
2F + A ·m

)
− fX

(
max{2r, A ·m}

)]}

1.3.3 Class Probability of Flanking Reads

Without loss of generality, we assume the first mate in the pair is flanking. The calculation is similar for
the other mate. Assuming the uniformity of coverage, we use a uniform distribution to find the probability
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of observing a flanking read.

P (ci = F ;A) = P
(
S1 < F, S1 + r < F + A ·m,S1 + r > F

)
= P

(
F − r < S1 < min{F, F + A ·m− r}

)
=
min{F + A ·m− r, F} − (F − r)

2F + A ·m− 2r

=
F +min{A ·m− r, 0} − F + r

2F + A ·m− 2r

=
min{A ·m, r}

2F + A ·m− 2r
(15)

1.3.4 Class Probability of FRRs

P (ci = FRR;A) = P (S1 ≤ x, x ≤ S2 ≤ x+ A ·m− r)

=

∫ 2F+A·m

2r

P (S1 ≤ x, x ≤ S1 + ∆− r ≤ x+ A ·m− r|∆ = δ)f∆(δ)dδ

=

∫ 2F+A·m

2r

P (S1 ≤ x, S1 ≤ x+ A ·m− δ, S1 ≥ x+ r − δ)f∆(δ)dδ (16)

We combine the inequalities describing S1 in (16) to derive conditions that need to hold for this integral
to have non-zero value.

• S1 ≥ x+ r − δ
S1 ≤ x+ A ·m− δ

}
⇒ x+ A ·m− δ ≥ x+ r − δ ⇒ A ·m ≥ r

⇒ This condition is the clear condition underlying presence of FRR reads. Smaller TR lengths
have 0 probability of having an FRR read.

• S1 ≥ x+ r − δ
S1 ≤ x

}
⇒ x ≥ x+ r − δ ⇒ δ ≥ r

⇒ The lower limit of the integral is δ ≥ 2r, hence this condition is satisfied for the range of possible
δ values.

Since there are two upper bounds for S1 in (16), we need to consider two different scenarios:

• x ≤ x+ A ·m− δ ⇒ δ ≤ A ·m
Therefore, for 2r ≤ δ ≤ A ·m ; A ·m ≥ 2r, integrand is simplified to:
⇒ P (S1 ≤ x, S1 ≤ x+ A ·m− δ, S1 ≥ x+ r − δ) = P (x+ r − δ ≤ S1 ≤ x)
For A ·m < 2r, this part has no contribution.

• x > x+ A ·m− δ ⇒ δ > A ·m
Similarly, for A ·m ≤ δ ≤ 2F + A ·m, integrand is simplified to:
⇒ P (S1 ≤ x, S1 ≤ x+ A ·m− δ, S1 ≥ x+ r − δ) = P (x+ r − δ ≤ S1 ≤ x+ A ·m− δ)
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Continuing integration for A ·m ≥ 2r:

P (ci = FRR;A) =

∫ A·m

2r

P (x+ r − δ ≤ S1 ≤ x)f∆(δ)dδ

+

∫ 2F+A·m

A·m
P (x+ r − δ ≤ S1 ≤ x+ A ·m− δ)f∆(δ)dδ

=

∫ A·m

2r

(x)− (x+ r − δ)
2F + A ·m− 2r

f∆(δ)dδ

+

∫ 2F+A·m

A·m

(x+ A ·m− δ)− (x+ r − δ)
2F + A ·m− 2r

f∆(δ)dδ

=

∫ A·m

2r

(δ − µ) + (µ− r)
2F + A ·m− 2r

f∆(δ)dδ

+

∫ 2F+A·m

A·m

A ·m− r
2F + A ·m− 2r

f∆(δ)dδ

=
1

C(2F + A ·m− 2r)

{
− σ2

[
fX(A ·m)− fX(2r)

]
+ (µ− r)

[
FX(A ·m)− FX(2r)

]
+ (A ·m− r)

[
FX(2F + A ·m)− FX(A ·m)

]}
;A ·m ≥ 2r

The result is similar for A ·m < 2r, except the first two terms are zero in this case:

P (ci = FRR;A) =
A ·m− r

C(2F + A ·m− 2r)

{
FX(2F + A ·m)− FX(A ·m)

}
;A ·m < 2r (17)

1.4 Read Probability

For each class of informative reads, the read probability describes the distribution of the informative
characteristic of the class, given an underlying allele A (Supplementary Figure 3). The details of read
probability for each class of informative reads is presented in the following sections.

1.4.1 Enclosing Reads

Enclosing reads contain the whole repeating region, as well as flanking regions before and after. Therefore,
the number of copies can be directly extracted after performing the local realignment step (see section 3).

The HipSTR stutter model [5] explains the distribution of the number of repeat copies in enclosing reads.
Equation (18) shows the probability of a read with ri copies having an error of length δ copies compared
to the underlying true number of copies A. In this model, u and d correspond to the probability of stutter
adding or removing copies of the motif, and ρs is the parameter of the geometric distribution that governs
the number of stutter deviations from true number of copies A.

P (ri − A = δ|ci = E;A) =


1− u− d δ = 0

uρs (1− ρs)δ−1 δ > 0

dρs (1− ρs)−δ−1 δ < 0

(18)
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Supplementary Figure 3: Read probabilities for each read class. Panels give read probabilities for
spanning (top left), flanking (top right), enclosing (bottom left), and fully repetitive (bottom right) reads.
In each plot, color indicates the number of repeats in an allele, the x-axis gives the data value modeled
for each read type, and the y-axis gives the probability distribution for each data type based on the allele
size. For enclosing reads, alleles with 40 or more repeats are not shown since those cannot be spanned by
short (100bp) reads.

1.4.2 Flanking Reads

Flanking reads with n copies of the motif imply that one of the alleles has at least n copies of the motif.
We use a uniform distribution (similar to [4]) to model the distribution of reads in the flanking class:

P (ri = n|ci = F ;A) =

{
1
A

n ≤ A
0 n > A

(19)

1.4.3 Spanning Reads

Fragments that completely span the TR region can create spanning read pairs. Spanning read pairs consist
of two mates that are mapped to the flanking region before and after the TR. During alignment, spanning
reads originating from an expanded TR allele experience a decrease in the insert size (Supplementary
Figure 4). Therefore, the distribution of insert sizes for spanning reads is similar to the insert size
distribution in section 1.1.2, with a decrease in average insert size by an amount equal to the size of
expansion. If the reference has R copies of an m base pair motif, we can describe the class probability of
spanning reads with the following Gaussian distribution:

P (ri|ci = S) ∼ N(µ− (A−R) ·m,σ) (20)

1.4.4 Fully Repetitive Reads (FRRs)

In section 1.2.2 we discussed how we use the number of FRR reads (both extracted from target locus and
off-target regions) to create the repetitive read count term in the likelihood model. Here we discuss another
informative aspect of FRR reads (Supplementary Figure 5).

Anchored FRRs are read pairs that contain one read completely consisting of repeats, while the other
mate pair is mapped to the flanking region before or after the TR locus. Using the insert size distribution
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∆

F: Flank Length (bp)
L: STR Region Length (bp)
∆: Insert size (bp)
r: read length (bp)

2F+L
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Supplementary Figure 4: Modeling spanning reads at repeat expansions. Reads mapping to
expanded TRs have an apparent decrease in fragment length distributions.

Left Flank Right FlankSTR

S1

∆

F: Flank Length (bp)
L: STR Region Length (bp)
∆: Insert size (bp)
r: read length (bp)
Ω: Distance of Anchor from STR (bp) 2F+L
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Ω

Supplementary Figure 5: Modeling fully repetitive reads. The distance of the non-repetitive mate
to the STR is modeled as a function of repeat length.

(see 1.1.2), we model the distance of the anchor read from the repeat region (shown by Ω) to obtain read
probability of this class of reads. We use the notation from section 1.1.2 to derive the read probability of
anchored FRR reads.

P (ri|ci = FRR;A) = P (Ω + 2r < ∆ < Ω + r + L) (21)

= F∆(Ω + r + L)− F∆(Ω + 2r) (22)

=
1

C
[FX(Ω + r + L)− FX(Ω + 2r)] (23)

On the other hand, fragments that originate from within the repeating region generate FRR read pairs
(both mates repetitive). These read pairs do not have an anchor, and are most likely aligned to one of the
off-target regions associated wiht the locus. These read pairs contribute to both FRR count term (adding
two FRR reads, see section 1.2.2) and read pair term (FRR class probability computed for Ω = −r, see
section 1.2.1).

2 Optimization

In order to find the maximum likelihood diploid genotype, we implement optimization in multiple steps.
Each step performs search in a different range of alleles. This modular approach to grid search helps prevent
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reporting sub-optimal genotypes as a result of the optimization algorithm finding local maxima. First, any
enclosing allele ai with support of 2 or more reads is added to the list of potential alleles. In the second
step, each potential enclosing allele, ai, is used to perform 1-dimensional optimization of the likelihood
function to find allele bi, were < ai, bi > minimizes the likelihood function. Next, multiple rounds of 2-
dimensional optimization are performed to find < ci, di > genotypes that minimize the likelihood function.
In each round the optiomizer uses a different initial point (< short, short >, < short, long >, etc.), which
helps prevent reporting local opima. Any potential allele from each step, ai, bi, ci, di, is added to the list of
potential alleles. In the final step we compare the likelihood from any combination of alleles in this list, to
find the maximum likelihood genotype. All 1 and 2-dimensional optimization is performed using COBYLA
algorithm [3] implemented in the NLopt library [1]. This algorithm is a derivative-free optimization method
that has a faster running time compared to exhaustive grid search.

2.1 Confidence Interval (Bootstrap)

After extracting all of the informative reads and performing optimization, we use the bootstrap method to
calculate confidence interval for the estimated genotypes. The number of bootstrap samples, Nb, is set by
the user. In each bootstrap round, GangSTR resamples the set of informative reads (with replacement)
to create a bootstrap sample. This sample undergoes the optimization procedure described in section 2
to calculate a pair of bootstrap estimates. GangSTR records all bootstrap estimates in separate lists for
shorter and longer alleles. These lists are then sorted and used to find the confidence interval at the desired
level of significance.

3 Local Realignment

Large repeat expansions create large insertions that are not present in the reference. In order to perform a
more accurate local realignment, we follow a method similar to that used in Tredparse [4]. Flanking regions
before and after the TR locus are used to create artificial reference sequences with different numbers of
repeat copies. Each read is realigned to these artificial reference sequences, starting from a reference with
only one copy of the motif and growing. The reference with the highest realignment score is used to derive
the number of repeat copies in the read. The realignment is performed using an efficient implementation
of Smith-Waterman algorithm [6].
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