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Figure S1: Simulations. A. The overall steps of the simulation are shown, from the 3D geometry of 39 
the structure to the sequence of digital frames. B. The geometry of the structure is constructed from 40 
a series of 3D tubes where every median axis of tubes (white line) is a 3D curve continuously defined 41 
by a three B-spline functions in the volume of interest. The membranes of the tubes are densely 42 
populated with possible positions of fluorophores according a given radius and a given thickness of 43 
membrane. C. The activation process takes the list of positions and activates the fluorophores 44 
following the 4-states model of activation. The parameters TBLEACH, TON and TDARK allow to 45 
control the blinking rate and the lifetime of the emitters. The output of the activation consist to a list 46 
of activations defined by a position (x,y,z), a time (t) and a number of emitted photons (I) in the 47 
current frame. D. The creation of the sequence run frame-to-frame. All activations of a given frame 48 
are convolved with the experimental PSF at high resolution (2 nm), and reduced to the camera 49 
resolution. The number of photons per pixel is converted to electron by pixel using the quantum 50 
efficiency (QE) of the camera. E. The noise model is applied to the three sources of electrons: the 51 
activation of the emitters, the spurious charge of the camera and the autofluorescence background 52 



(photons converted to electrons using QE). The shot noise follows a Poisson distribution; the EMCCD 53 
gain is simulated by a Gamma function; and a Gaussian noise is added to simulate the read-out 54 
noise. Finally, the acquired photons map at a given time are converted to digital frame in 16-bits, a 55 
baseline is also added.   56 
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Figure S2: Comparison of 2D software performance. Dashed lines indicate efficiency (higher is 59 
better). A. Performance of all 2D SMLM software. B. Average (marker with error bars) and best-in-60 
class (marker with name) software performance for 2D modalities. LD, low density; HD, high density. 61 
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 66 
Figure S3: Super-resolved images of 3D competition datasets for best-in-class (top) and 67 
representative average (bottom) software in each modality, for low SNR datasets. Box indicates 68 
zoomed region. Red, ground truth; green, software results.  Panel label key: Software_name 69 
Ranking° (Efficiency). 70 

71 
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Figure S4: Super-resolved images of 2D competition datasets for best-in-class (top) and 73 
representative average (bottom) software in each modality, for low SNR psuedo-ER datasets. Box 74 
indicates zoomed region. Red, ground truth; green, software results. Panel label key: 75 
Software_name Ranking° (Efficiency). 76 



 77 
Figure S5: Super-resolved images of 2D competition datasets for best-in-class (top) and 78 
representative average (bottom) software in each modality, for medium SNR psuedo-microtubule 79 
datasets. Box indicates zoomed region. Red, ground truth; green, software results. Panel label key: 80 
Software_name Ranking° (Efficiency). 81 
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83 
Figure S6: 3D software performance as a function of depth Z (axial position of the molecule) for each 84 
competition dataset (A-D). The metrics are locally computed within a depth interval. Based on the 85 
true axial position of the molecules, we exclude the ones out of the depth interval of interest Zi. 86 
From this subset and their (previously) paired software localisations, the lateral (1st column) and 87 
axial (2nd column) RMSE are computed. The Jaccard Index (3rd column) requires a false positive 88 
count for each bin, which is approximated using the non-paired software localisations that fall in Zi. 89 
The winners (for AS, DH and BP in red, green and blue respectively (full line)) for each dataset 90 
MT1.N1.LD, MT2.N1.HD, MT3.N2.LD, MT4.N2.HD are plotted at the row 1 to 4 respectively. In 91 
addition, a software with average performance is also displayed for the metrics lateral and axial 92 
RMSE and the Jaccard Index (dotted line). The number of true positive (TP, 4th column) is the 93 
number of paired molecule included in Zi. In addition to the winners, the total number of activations 94 
per depth interval is also displayed (Ground-truth, dotted black line).  95 
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Figure S7: Comparison inter-modality of the Cramer-Rao Lower Bounds (CRLB) in high SNR and low 99 
SNR conditions on a single frame (without temporal grouping). For each condition, the RMSE 100 
performance of the winning software is plotted for comparison with the CRLB limit1,2. A. CRLB as a 101 
function of the depth Z (axial position of the molecule) for noise condition N1 are computed with for 102 
each PSF: astigmatism AS; double helix DH; biplane, BP, biplane high background BP HBG. 103 
Calculations for AS, DH, BP were for a single molecule emitting N=5’000 photons on a frame with an 104 
auto-fluorescence background B=100 photons for AS, DH and BP. The background used for the 105 
biplane competition simulations had a higher background, B=200 (BP HBG, BP high background). B. 106 
CRLBs as a function of the number of emitted photons N for noise condition N1 are computed for 107 
each PSF (AS, DH, BP, BP HBG) for a single molecule at the focal plane (Z=0). C. CRLBs as a function of 108 
depth Z for noise condition N2. D. CRLBs as a function of the number of emitted photons N for noise 109 
condition N2. The CRLBs were computed based on the mathematical expression derived by Chao et 110 
al.3,4.  The PSF are 10 nm spaced from which a cubic spline representation is computed over an area 111 
of 6.4 x 6.4 μm2. Contrarily to Chao et al. the PSFs were not regularized. As shown in Figure 1, our 112 
acquisition model is similar to the one described by Chao et al. N is first convolved with the PSF and 113 
integrated over each camera pixel. The background B is added to each pixel value (except the BP 114 
modality for which we added B/2 to each pixel) and these quantities are then converted to an 115 
electron count by multiplying them with the Quantum Efficiency (QE = 0.9). Some spurious charge 116 
coming from the EMCCD camera (0.0002) is added to this quantity before applying a Poisson shot 117 
noise nie. The noise from the EMCCD camera (gain g = 300) is modelled as a Gamma distribution with 118 
the shape and scale parameters k = nie and θ = g respectively. Finally, a zero mean Gaussian readout-119 
noise (σ = 74.4) is added. The analog-to-digital conversion is negligible and ignored for the 120 
computation of the CRLB. Once the Fisher Information matrix is obtained4, the square root of the 121 
diagonal of its inverse equals the CRLB. This setting corresponds to the MT1.N1.LD dataset. 122 
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Figure S8: Comparison of the winner with the Cramer-Rao Lower Bounds (CRLB), combining 124 
localizations from multiple frames (temporal grouping), in high SNR and low SNR conditions. A.  CRLB 125 
as a function of the depth Z (axial position of the molecule) are computed for noise condition N1 126 
with each PSF (AS, DH, BP in red, green, blue respectively) for a single molecule emitting N=5’000 127 
photons per frame on F = 2.85 frames (average number of frames for which a molecule is activated) 128 
with an auto-fluorescence background B=100 photons for AS, DH and BP. The BP was also displayed 129 
for B=200 because it was the setting of the datasets of the competition (BP HBG). B. CRLB as a 130 
function of the number of emitted photons N per frame for noise condition N1 are computed for 131 
each PSF (AS, DH, BP, BP HBG) for a single molecule at the focal plane (Z = 0) for F = 2.85 frames 132 
(average number of frames for which a molecule is activated). C. CRLBs as a function of depth Z for 133 
noise condition N2 for F = 2.85 frames. D. CRLBs as a function of the number of emitted photons N 134 
for noise condition N2 for F = 2.85 frames. The details of the computation of the CRLBs for a single 135 
frame are in the legend of Fig. S7. The Fisher Information matrix (FIM) for a single frame is multiplied 136 
by F and the square root of the diagonal of its inverse equals the CRLB.  137 
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 140 
Figure S9: XY and YZ profiles of experimentally derived competition PSFs for different imaging 141 
modalities compared with theoretical Gibson & Lanni PSF5. Experimentally derived PSFs were 142 
constructed as described in Online Methods, and under conditions summarized in Table S4. Gibson-143 
Lanni model PSF calculated under corresponding conditions (NA 1.49, 700 nm emission wavelength).  144 
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Figure S10: Screenshot of the interactive leaderboard on competition website. A. Software can be 150 
ranked for all key competition parameters and is automatically updated on submission of new 151 
software entries. B.  Software can be compared side-by-side for all key competition 152 
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Figure S11: Wobble correction is required for accurate software-simulation comparison with 154 
experimentally derived PSFs (unless the software incorporates wobble directly in the analysis 155 
model). A-B. Profile of representative software localization offset as a function of axial position. C-D. 156 
Comparison of representative software versus ground truth results with and without wobble 157 
correction. 158 
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160 
Figure S12: Metrics for software Z-range.  Z-range measures the range over which software detects 161 
>0.5*(max recall) of ground truth molecules. However, a large Z-range is not practically useful if the 162 
software maximum recall is very low. The supplementary metric consolidated Z-range rescales the 163 
FWHM recall by the maximum recall. This will return a low value if either the FWHM recall or the 164 
maximum recall of the software is low. 165 
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 169 
Figure S13: 3D software performance for biplane (A, BP) and double helix (B, DH) modalities. Gold 170 
stars indicate top performers for each dataset. Dashed lines in top, middle panels indicate overall 171 
efficiency (higher is better).  172 
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 174 

Figure S14: Comparison and principal component analysis of assessment metrics. A. The 175 
linear regression slope between lateral/ axial RMSE versus Jaccard index for all results 176 
(datasets and software). The weighting for the efficiency formulae relies on these 177 
observations. B. Covariance matrix (left) and principal component analysis (PCA, right) of 178 
the metrics for all the results. The covariance analysis shows the Jaccard index, Recall, FN, 179 
and Zrange are strongly correlated. Similarly, the different RMSEs are also correlated. To a 180 
lesser extent, the SNRs are correlated to the Jaccard index. The PCA shows that the first 181 
component explains 51.24% of the variance, which confirms there is redundancy in the 182 
metrics.  183 
  184 



 185 

Name of the 
software 

2D 2D AS AS BP BP DH DH Wobble PSF 
Temporal 
grouping 

Run- 
time Grid 

Specific 
information 
on the 
algorithm or 
the PSF 

LD HD LD HD LD HD LD HD     
  

  

Ranked if 
efficiency larger 
than 

50 30 40 10 40 10 40 10     

  

    

 Non-iterative 

3D-WTM6 21 11 12 9         bead Wedge No 
<1h. 
GPU # 

Detection, 
wedge 
matching 

QuickPALM7                 bead Gauss No <1min. C Center of 
gravity 

WTM6 
                

  Wedge No 
<10min. 
GPU # 

Detection, 
wedge 
matching 

  Single emitter fitting 
3D-STORM-
Tools7 8   8 6         bead Gauss No <10s. 

GPU C LS 

EasyDHPSF8             6   bead Gauss No <3h C LS 

FIRESTORM2 22                 Gauss No <1min. C LS 

Localizer9 17                 Gauss No <10s. 
GPU C LS, MLE 

MiaLang10                   Gauss No n.a. C MLE 

MIATool11 20   13   2   5   bead Bessel Yes <10min. C MLE 

mlePALM 6   11           bead Gauss No <3h. C MLE 

Octane12                   Gauss No <1min. C LS 

PALMER13 
                

  Gauss No 
<10min. 
only 
HD 

C MLE 

PeakSelector14                   Gauss No <10min. C LS 

QC-STORM 14   11       7   auto Gauss Yes <1s. 
GPU C MLE 

RapidSTORM15 16               bead Gauss No <10s. C LS, MLE 

SFP_Estimator 19                 Gauss No <1min 
FGPA C MLE 

SMAP-2016 10 6 7 7 3 
  

2 
  

bead Gauss Yes 
<1min. 
GPU C 

Several 
algorithms, 
LS,MLE 

SMAP-201816 23  2  1 1 1  auto Learn  Yes <1min. 
GPU C Cubic spline 

representation 

SMolPhot 4 
  

1 1 
        

auto Gauss Yes 
 
<10min. C  

LS + CLEAN 
+ Frame 
grouping 

STORMChaser                 auto Gauss No <10min. C LS 

WaveTracer17 7   6 10         auto Gauss No <1h 
GPU C LS 

  Multi-emitter fitting 
3D-
DAOSTORM18 2 4 4 2         bead Gauss Yes <10min. C MLE 

CSpline19 5 9 3 3     3 1 auto Learn Yes <10min. C Cubic spline 
representation 

PeakFit 1 5               Gauss No <10min. C LS, MLE 

RainSTORM20 12 8             bead Gauss No <10min. 
GPU C LS 

ThunderSTORM21 9 
  

9 5 4 4 
    

bead Gauss No 
<1min. 

C 
Several 
algorithms, 
LS, MLE 

  Compressed sensing 1: Matching pursuit algorithms for molecule candidates, sparsity constraint 



ADCG22 3 1               Gauss No 
<10min. 
GPU C 

Constrained 
gradient 
descent 

SMfit 11 3 
            

  Gauss No 
 
<3h C 

Block 
coordinate 
descent 

SOLAR_STORM 
            

4 
  

bead Arbitrary No 
<10min. 

C 
Orthogonal 
Matching Purs. 
+ L1H 

TVSTORM23 15 7 5 4         bead Gauss No <1h 
GPU C Backtracking 

line search 
  Compressed sensing 2: Deconvolution-type algorithm, sparsity constraint 

CEL024 
  

12 
            

  Arbitrary No 
<3h 
only 
HD 

# 
Majorization-
Minimization 
(l0) 

FALCON25 13 2 
      

3 
    

auto Gauss No 
<3h 
GPU C 

Sparsity 
constraint 
(weighted l1) 

L1H26                   Gauss No <10min. # L1-homotopy 
  Other approaches 

ALOHA27 
                

  Gauss No 
 

C 
Detection, 
annihilating 
filter 

Brecs                 auto Arbitrary No <1h. 
GPU # Bayesian 

LEAP28          3 2     auto Bessel No 
<3h 

C 
Deconvolution, 
annihilating 
filter 

pSMLM-3D29 18 10   8         bead Gauss No <10s. C Detection, 
phasor analysis 

Participation 31 28 17 14 9 8 10 9           

Table S1. Participant software summary. A grey cell in the table indicates the participation to the 186 
competition and the number shows the rank of the software for on the 8 categories. The column 187 
“Wobble 3D” indicates how the software proceeds with the wobble correction: auto for an intrinsic 188 
correction, bead for an explication calibration on beads. The “C” in the column Grid indicates that the 189 
software use a grid-less algorithm contrarily to “#” that indicates an algorithm running on a pre-190 
defined grid. The runtime is computed as much as possible by averaging the computation time 191 
provided by the participants on the low density datasets (~20'000 frames) for 2D and AS, GPU indicates 192 
that the participants have used a graphics processor card.  193 

 194 
  195 
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 197 

Dataset Template structure Sample 
thickness  SNR Sample labelling 

method & 
fluorophore 

Molecule 
brightness  

Autofluorescence 
level   

Molecule 
density  

  μm  photon/ mol/ 
frame 

photons/pixel/ 
frame mol/ μm 

Beads Beads calibration 
sample 1.5 Very high Very bright 

fluorescent beads 20000 0   

MT1.N1.LD 
Microtubules 
Diameter 25 nm 

1.5 High 
Organic dye (Alexa 
647), antibody 
labelling  

5000 ~100 (moderate) 0.25 (low) 

MT2.N1.HD 1.5 High 
Organic dye (Alexa 
647), antibody 
labelling  

5000 ~100 (moderate) 2.5 (high) 

MT3.N2.LD  1.5 Low Fluorescent protein 
label (mEos3.2) 500 ~10 (low) 0.25 (low) 

MT4.N2.HD  1.5 Low Fluorescent protein 
label (mEos3.2) 500 ~10 (low) 2.5 (high) 

ER1.N3.LD 
Pseudo endoplasmic 
reticulum. 
Diameter 150 nm 
(approximative) 

0.7 Medium Affinity dye label 
(Mitotracker red) 3000 ~500 (high) 0.5 (low) 

ER2.N3.HD 0.7 Medium Affinity dye label  
(Mitotracker red) 3000 ~500 (high) 5 

(very high) 

Table S2: Simulation parameters for each condition. Molecule density calculated based on 198 
approximate diffraction limited area (A) of structure. For a thin linear structure, A = n*L*FWHM 199 
where n is the number of filaments, L is the length of filament (approximated as image width), 200 
FWHM is PSF FWHM. For a thick linear structure, A=n*L*sqrt(w^2+ FWHM^2) 201 

 202 
 203 
 204 

Density Structure Role Modality 
2D AS DH BP 

Beads Calibration Beads Beads Beads Beads 
Low 
Density 
(LD) 

MT0 Training MT0.N1.LD MT0.N1.LD MT0.N1.LD MT0.N1.LD 
ER1 Contest ER1.N3.LD    
MT1 Contest  MT1.N1.LD MT1.N1.LD MT1.N1.LD 
MT3 Contest MT3.N2.LD MT3.N2.LD MT3.N2.LD MT3.N2.LD 

High 
Density 
(HD) 

ER2 Contest ER2.N3.HD    
MT2 Contest  MT2.N1.LD MT2.N1.LD MT2.N1.LD 
MT4 Contest MT4.N2.HD MT4.N2.HD MT4.N2.HD MT4.N2.HD 

Table S3: List of all competition datasets. Datasets are available at 205 
http://bigwww.epfl.ch/smlm/challenge2016/index.html?p=datasets 206 

 207 
  208 
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 209 
Modality Objective Camera Pixel size at the sample 

plane 
Z-step Z-

range 
2D Nikon NA 1.49 TIRF oil  

(commercial N-STORM 
microscope) 

EMCCD 43 nm  
(1.5x Optovar and 2.5x 
SIM magnifiers in place) 

10nm 3μm 

Astigmatism 
(AS) 

Nikon NA 1.49 TIRF oil  EMCCD 160 nm 10nm 3μm 

Double-helix 
(DH) 

Nikon NA 1.49 TIRF oil  EMCCD 160 nm 20nm 3μm 

Biplane (BP) The biplane model PSF was constructed from the 2D PSF. The two defocused 
PSFs were constructed by duplicating the 2D PSF and offsetting it by -250 nm 
and 250 nm for each Z-plane 

 210 
Table S4: Microscope acquisition parameters for experimental PSF acquisition for each imaging 211 
modality. 212 

  213 



 214 
Table S5: Best in class and average software performance for each dataset. 215 
  216 
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Supplementary Note 1 217 

LIST OF PARTICIPANTS TO THE CHALLENGE 2016 218 
 219 
3D-DAOSTORM18  
Contact Hazen Babcock, Harvard University (Zhuang group), Cambridge, MA, USA 
Reference Babcock, H.P. and Zhuang, X., 2017. Analyzing single molecule localization 

microscopy data using cubic splines. Scientific Reports, 7(1), p.552. 
Open-access https://github.com/ZhuangLab/storm-analysis 
Platform Python 
Class of algorithms Multi-emitter fitting algorithm 
Participation 2016 2D, AS 
Note of the authors Maximum likelihood estimation localization using a Gaussian PSF model. 
  
3D-STORM Tools  
Contact Fabian Hauser, CURT research group, University of Upper Austria, Linz, 

Austria 
Open-access Proprietary 
Platform Qt framework 
Class of algorithms Single emitter fitting 
Participation 2016 2D, AS 
Note of the authors The 3D STORM Tools are easy to use applications for 3D astigmatism 

super-resolution microscopy. Each tool handles another domain of the 3D 
STORM method. The Calibration3D tool determines the calibration curves 
for the further steps. The Analysis3D tool evaluates 3D STORM 
experiments and returns a list of localizations. The Visualization3D tool 
offers the possibility for further 3D data analysis (e.g., clustering) and 
illustrates localizations of fluorophores in a 3D plot and as 2D heat-map 
image. All tools are written in C++ using the Qt framework version 5.7. 

  
3D-WTM  
Contact Shigeo Watanabe, Hamamatsu Photonics K.K., Japan 
Reference S. Watanabe et al., Evaluation of Localization Algorithm of High-Density 

Fluorophores, Wedged Template Matching, FOM (2013). 
Open-access Proprietary 
Platform Stand-alone (C++) 
Class of algorithms Non-iterative (Template Matching) 
Participation 2016 2D, AS, DH, BP 
Note of the authors Previously we developed the Wedged Template Matching (WTM) algorithm 

for localizing molecules with overlapping emission point spread functions in 
2D. Here we developed 3D-WTM by extending the function of WTM to 3D 
localization.  3D-WTM prepares template catalogue from beads z-stack 
images for each modality, 2D, astigmatism, double-helix and Biplane. By 
using the different central angle wedged shape template depending on the 
pixel intensity 3-WTM localizes each molecule in 3D space. After 
background subtraction, template matching is applied for z-axis and then 
sub-pixel level template matching for lateral x, y-axis localization, using 
normalized cross-correlation as matching evaluation function. WTM keeps 
applying template matching to all the information until all the molecules at 
images are recognized. . 

  
ADCG  



Contact Nicholas Boyd, Geoff Schiebinger, Ben Recht, University of Berkeley, USA 
Reference N. Boyd, G. Schiebinger, and B. Recht. “The alternating descent conditional 

gradient method for sparse inverse problems.” In: SIAM Journal on 
Optimization 27.2 (2017), pp. 616–639. 

Open-access https://github.com/nboyd/SparseInverseProblems.jl 
Platform Julia 
Class of algorithms Matching pursuit algorithm for molecule candidates, sparsity constraint 
Participation 2016 2D 
Note of the authors Simple localization using the alternating descent conditional gradient 

method to fit Gaussians. 
  
ALOHA  
Contact Junhong Min and Kyong Jin, Bio-Imaging and Signal Processing Lab, 

KAIST, Korea 
Reference Min, J., Carlini, L., Unser, M., Manley, S. & Ye, J. C. Fast live cell imaging at 

nanometer scale using annihilating filter based low rank Hankel matrix 
approach. Wavelets and Sparsity (2015). 

Platform Matlab 
Class of algorithms Annihilating filter 
Participation 2016 2D 
Note of the authors This is a grid-free 2D localization algorithm with data-driven PSF estimation. 

Specifically, based on the observation that the sparsity in the spatial domain 
implies the low-rankness in the Fourier domain, the proposed method 
converts PSF estimation as well as source localization problems to Fourier-
domain signal processing problems so that a truly grid-free localization is 
possible with adaptive PSF estimation. 

  
Brecs  
Contact Hervé Rouault, Timothée Lionnet, Janelia Research Campus, HHMI, VA, 

USA 
Open-access https://github.com/hrouault/Brecs 
Platform C (Gui for ImageJ / Fiji) 
Class of algorithms Bayesian approach 
Participation 2016 2D, BP, DH 
Note of the authors Several recent methods have proposed to reconstruct images at higher 

densities of fluorophores. However, these heuristic-based techniques are 
usually constrained to specific imaging schemes and are limited in their 
performance. We propose a rigorous formulation of the inference problem to 
solve, and use advanced statistical inference techniques (the Bethe 
approximation) to provide a controlled approximation to the exact solution. 
Our method, which we called B-recs (Bethe reconstruction), achieves 
excellent performance especially in the case of dense samples. Importantly, 
our technique is versatile thanks to its general and rigorous framework. We 
demonstrate its use with examples covering various leading edge imaging 
modalities, ranging from 2D superresolution to various modalities of high-
density 3D imaging. A user-friendly version of our algorithm is freely 
available as a plugin for the popular open-source Image Analysis Software 
Fiji. A unique feature of B-recs is that it provides two complementary 
estimators for the reconstructed image: a discrete one, listing the 
coordinates of each fluorescent molecule detected (this is the standard 
output of LM algorithms); a probabilistic one, which consists of an image in 
which molecules appear as probability clouds which size and shape encode 
the localization uncertainty of each localized spot. 



  
CEL0  
Contact Emmanuel Soubies, INRIA Sophia Antipolis, France 
Reference Soubies, E., Blanc-Féraud, L. & Aubert, G. A Continuous Exact CEL0 

Penalty (CEL0) for Least Squares Regularized Problem. SIAM J. Imaging 
Sci. 8, 1607–1639 (2015). 

Platform Matlab 
Class of algorithms Deconvolution-type algorithms with sparsity constraint 
Participation 2017 2D (high-density) 
Note of the authors CEL0-STORM is an algorithm designed for 2D high-density molecule 

localization. We formulate the localization problem as a sparse 
approximation problem which is then relaxed using the recently proposed 
CEL0 penalty. This relaxation is then minimized with a nonsmooth 
nonconvex algorithm, namely the Iterative Reweighed L1 (IRL1) algorithm. 

  
CSpline  
Contact Hazen Babcock, Harvard University (Zhuang group), Cambridge, MA, USA 
Reference Babcock, H. P. & Zhuang, X. Analyzing Single Molecule Localization 

Microscopy Data Using Cubic Splines. Scientific Reports 7, 552 (2017). 
Open-access https://github.com/ZhuangLab/storm-analysis/tree/master/spliner 
Platform Python 
Class of algorithms Multi-emitter fitting algorithm. Cubic-spline of the PSF. 
Participation 2016 2D, AS, BP 
Note of the authors Maximum likelihood estimation using cubic-splines to model the PSF. 
  
EasyDHPSF  
Contact Alex von Diezmann, Camille Bayas, and W. E. Moerner, Stanford University 

Department of Chemistry, Stanford, USA 
Reference Lew, M. D., von Diezmann, A. R. & Moerner, W. E. Easy-DHPSF open-

source software for three-dimensional localization of single molecules with 
precision beyond the optical diffraction limit. Protocol exchange 2013, 
(2013). 

Open-access http://sourceforge.net/projects/easy-dhpsf/files/Easy-
DHPSF%20documentation%20v1.0.pdf/download 

Platform Matlab 
Class of algorithms Single emitter fitting. (only for DH) 
Participation 2016 DH 
Note of the authors The fast and accurate localization of single-molecule positions from raw 

image data is a critical part of every single-molecule super-resolution 
experiment. Engineering a microscope to encode the double-helix point 
spread function (DH-PSF) permits excellent 3D localization precision over a 
~3-micron axial (z) range, but requires specialized analysis software. Here, 
we present a suite of open-source MATLAB software, Easy-DHPSF, 
coordinated by a graphical user interface that allows the localization of 
single-molecule positions and reconstruction of 3D super-resolution images 
using the DH-PSF. For computational expediency and precision, our 
algorithm coarsely localizes emitters by template matching and obtains final 
position estimates via nonlinear least-squares fitting. A calibration of the 
axially-dependent revolution of the lobes of the DH-PSF is used to extract z, 
with xy calculated from the midpoint of the lobes plus a z-dependent 
correction factor. While overlapping PSFs are ignored, and the least-
squares algorithm is not as precise as maximum-likelihood-estimation 
methods, Easy-DHPSF has been shown to obtain transverse (axial) 



localization precisions in cells of 14 (25) nm using synthetic dyes* and 28 
(43) nm with fluorescent proteins, with typical processing speeds of 10s of fit 
PSFs per second on a standard workstation. Our software provides intuitive 
user-defined filters to reject false positives and refine the data, is capable of 
drift correction via fiducials, and can provide visual reconstructions of data 
as a histogram or scatterplot. 

  
FALCON  
Contact Junhong Min and Jong Chul Ye, Bio-Imaging and Signal Processing Lab, 

KAIST, Korea 
Reference Min, J. et al. FALCON: fast and unbiased reconstruction of high-density 

super-resolution microscopy data. Scientific reports 4, 4577 (2014). 
Open-access http://bispl.weebly.com/super-resolution-microscopy.html 
Platform Matlab 
Class of algorithms Deconvolution-type algorithms with sparsity constraint 
Participation 2016 2D, DH 
Note of the authors This is a localization algorithm for high-density imaging. Our algorithm is 

designed to provide unbiased localization on continuous space and high 
recall rates for high-density imaging, and to have orders-of-magnitude 
shorter run times compared to previous high-density algorithms. 3D 
localization is also possible.  

  
FIRESTORM  
Contact Jochen Michael Reichel, Thomas Vomhof, Jens Michaelis, Institute of 

Biophysics, Ulm University, Germany 
Reference Schoen, M. et al. Super-resolution microscopy reveals presynaptic 

localization of the ALS/FTD related protein fus in hippocampal neurons. 
Frontiers in cellular neuroscience 9, 496 (2016). 

Open-access https://www.uni-ulm.de/nawi/nawi-biophys/forschung/forschung-
michaelis/method-development/software/firestorm.html 

Platform Matlab 
Class of algorithms Single emitter fitting 
Participation 2016 2D 
Note of the authors FIRESTORM is a localization microscopy data analysis and reconstruction 

tool. After background correction by a running median temporal filter regions 
of interest around intensity peaks are determined if the peaks meet the 
minimal thresholds defined by the user (max FWHM, symmetry constant, 
SNR, min. Number of photons). Within those regions of interest a two-
dimensional Gaussian function is fitted for the intensity distribution. Blinking 
events spanning consecutive frames can be combined to a single blinking 
event with a higher number of photons. The localization list is analyzed to 
determine the distributions of SNR and PSF width as well as the photon 
statistics. Based on this analyses the localizations list can be filtered prior to 
the reconstruction to yield optimal trade-off between recall and localization 
precision. The intensity values of the reconstructed image can be chosen to 
be based on the number of photons (NOP) or the number of localizations 
(NOL). Drift can be corrected by FIRESTORM either by Redundant Cross 
Correlation (RCC) or by using fiducial marker positions. The program 
supports multi-color imaging. For sequential imaging of different colors the 
drift between the measurements is interpolated for the measurement pause. 
The software is implemented in MATLAB using parallel computation to 
increase analysis speed. 

  

http://bispl.weebly.com/super-resolution-microscopy.html


L1H  
Contact Hazen Babcock, Harvard University (Zhuang group), Cambridge, MA, USA 
Reference Babcock, H. P., Moffitt, J. R., Cao, Y. & Zhuang, X. Fast compressed 

sensing analysis for super-resolution imaging using L1-homotopy. Optics 
express 21, 28583–28596 (2013). 

Open-access http://zhuang.harvard.edu/software/l1h.html 
Platform Python 
Class of algorithms Deconvolution-type algorithms with sparsity constraint 
Participation 2016 2D 
Note of the authors Compressed sensing analysis using a L1H homotopy approach. 
  
LEAP  
Contact Hanjie Pan, EPFL, Lausanne, Switzerland 
Reference Pan, H., Simeoni, M., Hurley, P., Blu, T. & Vetterli, M. LEAP: Looking 

beyond pixels with continuous-space EstimAtion of Point sources. A&A 608, 
A136 (2017). 

Open-access https://github.com/hanjiepan/LEAP 
Platform Matlab 
Class of algorithms Annihilating filter 
Participation 2017 BP 
  
Localizer  
Reference Dedecker, P., Duwé, S., Neely, R. K. & Zhang, J. Localizer: fast, accurate, 

open-source, and modular software package for superresolution 
microscopy. Journal of biomedical optics 17, 126008 (2012). 

Open-access http://www.igorexchange.com/project/Localizer 
Platform Igor 
Class of algorithms Single emitter fitting 
Participation 2016 2D, BP (run by an expert) 
Note of the authors We present Localizer, a freely available and open source software package 

that implements the computational data processing inherent to several types 
of superresolution fluorescence imaging, such as localization 
(PALM/STORM/GSDIM) and fluctuation imaging (SOFI/pcSOFI). Localizer 
delivers high accuracy and performance and comes with a fully featured and 
easy-to-use graphical user interface but is also designed to be integrated in 
higher-level analysis environments. Due to its modular design, Localizer can 
be readily extended with new algorithms as they become available, while 
maintaining the same interface and performance. We provide front-ends for 
running Localizer from Igor Pro, Matlab, or as a stand-alone program. We 
show that Localizer performs favorably when compared with two existing 
superresolution packages, and to our knowledge is the only freely available 
implementation of SOFI/pcSOFI microscopy. By dramatically improving the 
analysis performance and ensuring the easy addition of current and future 
enhancements, Localizer strongly improves the usability of superresolution 
imaging in a variety of biomedical studies.  

  
MiaLang  
Contact Yujie Wang, Britton Chance Center for Biomedical Photonics 

Wuhan National Laboratory for Optoelectronics (WNLO) 
Huazhong University of Science and Technology, China 



Reference Quan, T. et al. Ultra-fast, high-precision image analysis for localization-
based super resolution microscopy. Optics Express 18, 11867–11876 
(2010). 

Open-access http://bmp.hust.edu.cn/srm/ 
Platform ImageJ 
Class of algorithms Single emitter fitting 
Participation 2016 2D 
Note of the authors MaLiang (Maximum likelihood algorithm and a Graphics Processing Unit) is 

a practical method for processing sparse isolated images of localization 
microscopy. It is the combination of GPU parallel computation, maximum 
likelihood estimator. This software is an ImageJ plugin based on parallel 
computation, while executes more than 8 orders of magnitudes faster. 

  
MIATool  
Contact R. Velmurugan, A. V. Abraham, and R. J. Ober, Texas A&M University, 

College Station, Texas, USA 
Reference Chao, J., Ward, E. S. & Ober, R. J. A software framework for the analysis of 

complex microscopy image data. IEEE Trans Inf Technol Biomed 14, 1075–
1087 (2010). 

Open-access http://www.wardoberlab.com/software/miatool/ 
Platform Java 
Class of algorithms Single emitter fitting 
Participation 2016 2D, AS, BP, DH 
Note of the authors We present the latest implementation of the Microscopy Image Analysis 

Tool (MIATool) software framework and its application to single molecule 
localization microcopy data analysis. The MIATool framework is founded on 
the idea of using different logical arrangements of image pointers, as well as 
corresponding arrangements of processing settings, metadata, and 
analytical results, to facilitate the execution of the disparate tasks that are 
potentially required by a proper analysis of the image data. Here, we 
demonstrate the use of the latest realization of MIATool, coded in Java, to 
perform the tasks necessary for the localization-based super-resolution 
reconstruction of cellular structures. In particular, we illustrate how the 
paradigm of image pointer and associated arrangements can naturally be 
exploited and extended to support the analysis tasks that are carried out to 
properly reconstruct a high resolution image from the raw image data. 
These tasks include, for example, the viewing of the raw image data as a 
visual quality check, spot detection that identifies the single molecules, and 
the accurate localization of the identified molecules. A key feature of the 
current MIATool implementation is its flexibility. The crucial task of molecule 
localization, for example, can be performed with different estimation 
algorithms, point spread function models, and detector noise models. 
Analysis of data generated by different modalities, such as astigmatic 
imaging and multifocal plane imaging, is therefore readily supported. 

  
mlePALM  
Contact Hendrik Deschout, Laboratory of Nanoscale Biology, EPFL, Switzerland 
Platform Matlab 
Class of algorithms Single emitter fitting 
Participation 2016 2D, AS 
Note of the authors mlePALM is an adapted version of the localization software used by Betzig 

et al. in their first report on Photo-Activated Localization Microscopy. We 
have replaced the fast but sub-optimal Gaussian mask estimator with the 



maximum likelihood estimation of a Gaussian PSF model, as implemented 
by Smith et al. This not only allowed us to obtain more precise localizations, 
but additionally enabled us to perform astigmatic 3D localization by using a 
bivariate Gaussian PSF model. 

  
Octane  
Reference Niu, L. & Yu, J. Investigating Intracellular Dynamics of FtsZ Cytoskeleton 

with Photoactivation Single-Molecule Tracking. Biophysical Journal 95, 
2009–2016 (2008). 

Open-access https://github.com/jiyuuchc/Octane 
Platform ImageJ 
Class of algorithms Single emitter fitting 
Participation 2016 2D (run by an expert) 
Note from the website The Octane is a program we developed to facilitate works involved in super-

resolution optical imaging (PALM, STORM etc). By providing an intuitive 
graphical user interface front end, we hope it can serve as a useful tool for a 
wide range of scientists, including experimental biologists as well as 
physicists. The program runs as a plugin of the (extremely versatile) ImageJ 
software, thus can be used on any image format that is supported by 
ImageJ, 

  
PALMER  
Contact Zhen-li Huang and Yi-na Wang, Wuhan Laboratory for Optoelectronics, 

HUST, Wuhan, China 
Reference Wang, Y., Quan, T., Zeng, S. & Huang, Z.-L. PALMER: a method capable of 

parallel localization of multiple emitters for high-density localization 
microscopy. Opt. Express, OE 20, 16039–16049 (2012). 

Open-access http://bmp.hust.edu.cn/srm/ 
Platform ImageJ 
Class of algorithms Single emitter fitting 
Participation 2016 2D 
  
PeakFit  
Contact Alex Herbert and Anthony M. Carr, Genome Damage and Stability Centre, 

University of Sussex, UK 
Open-access http://www.sussex.ac.uk/gdsc/intranet/microscopy/imagej/smlm_plugins 
Platform ImageJ 
Class of algorithms Multi-emitter fitting 
Participation 2016 2D 
Note of the authors We present software for single-molecule localisation microscopy based on 

2D Gaussian fitting. For each frame candidate peaks are ranked and 
sequentially fit using a local region. An estimate of the PSF width is required 
which can be obtained from the optical system used for acquisition, or from 
a calibration image. Candidates are identified using smoothing on the image 
followed by non-maximal suppression. Peaks are processed in descending 
height order and fit using a region size based on the PSF width. Fitting uses 
Least Squares Estimation or Maximum Likelihood Estimation with an EM 
CCD noise model. Results are filtered using signal-to-noise, width, 
coordinate shift and localisation precision criteria. Processing is stopped 
based on consecutive failures. 
High density samples can add neighbour peaks within the fit region and 
these are included if they are within a fraction of the height of the candidate. 
If multiple peak fitting fails then single peak fitting is used. Additionally, the 



candidate can be fit using a two peaks model if the fit residuals show a 
skewed distribution in the quadrants around the centre. The doublet fit is 
selected if it improves the Bayesian Information Criterion (BIC). The 
software is written as a multi-threaded Java library and runs as a suite of 
plugins for ImageJ. Plugins are provided for fitting single images or an 
image series, drift correction and clustering, and are fully scriptable within 
the ImageJ macro language allowing automated analysis. Results can be 
visualized as a rendered image and saved to file. 

  
PeakSelector  
Reference Shtengel, G. et al. Interferometric fluorescent super-resolution microscopy 

resolves 3D cellular ultrastructure. Proceedings of the National Academy of 
Sciences 106, 3125–3130 (2009). 

Platform IDL 
Class of algorithms Single emitter fitting 
Participation 2016 2D (run by an expert) 
Note of the authors PeakSelector is a software written in IDL for processing single-molecule 

localization microscopy. It supports grouping, visualization, filtering, 3D 
(astigmatism). It has a graphical user interface and runs on any platform that 
supports the IDL Virtual Machine. 

  
pSMLM-3D  
Contact Koen Martens and Johannes Hohlbein, Laboratory of Biophysics, 

Wageningen University, The Netherlands 
Reference Martens, K. J. A., Bader, A. N., Baas, S., Rieger, B. & Hohlbein, J. Phasor 

based single-molecule localization microscopy in 3D (pSMLM-3D): An 
algorithm for MHz localization rates using standard CPUs. The Journal of 
Chemical Physics 148, 123311 (2017). 

Open-access https://github.com/kjamartens/thunderstorm/tree/phasor-intensity-
1/Compiled%20plugin 

Platform ImageJ 
Class of algorithms Detection and phasor analysis 
Participation 2016 2D, AS 
Note of the authors We present a fast and model-free 2D and 3D single-molecule localization 

algorithm that allows more than 3 × 106 localizations per second to be 
calculated on a standard multi-core central processing unit with localization 
accuracies in line with the most accurate algorithms currently available. Our 
algorithm converts the region of interest around a point spread function to 
two phase vectors (phasors) by calculating the first Fourier coefficients in 
both the x- and y-direction. The angles of these phasors are used to localize 
the center of the single fluorescent emitter, and the ratio of the magnitudes 
of the two phasors is a measure for astigmatism, which can be used to 
obtain depth information (z-direction). Our approach can be used both as a 
stand-alone algorithm for maximizing localization speed and as a first 
estimator for more time consuming iterative algorithms. 

  
QC-STORM  
Contact Luchang Li, Wuhan National Laboratory for Optoelectronics-Huazhong 

University of Science and Technology, China 
Platform ImageJ 
Class of algorithms Single emitter fitting 
Participation 2017 2D, AS, DH 



Note of the authors QC-STORM are Micro-manager and ImageJ plugins for real time processing 
of sCMOS based high-throughput single molecule localization imaging. QC-
STORM is dramatically faster than similar software without sacrifice 
localization precision. 

  
QuickPALM  
Contact Ricardo Henriques, LMCB - MRC Laboratory for Molecular Cell Biology, 

UCL, UK 
Reference Henriques, R. et al. QuickPALM: 3D real-time photoactivation nanoscopy 

image processing in ImageJ. Nat Meth 7, 339–340 (2010). 
Open-access https://code.google.com/archive/p/quickpalm/downloads 
Platform ImageJ 
Class of algorithms 2D, AS 
Participation 2016 Non-iterative (center of mass) 
Note of the authors QuickPALM is the first open source, freely available, ImageJ based super-

resolution algorithm for 3D PALM and STORM based image analysis. 
Published in 2010, it rapidly became one of the most popular SMLM 
analytical solutions due to its speed and ease of use. It combines real-time 
processing capability with additional important features including 3D 
reconstruction, drift correction and real-time acquisition control. Contrary to 
most SMLM algorithms which use a fitting procedure for particle localization, 
QuickPALM uses an optimized and high-speed center-of-mass calculation. 
Since its release, QuickPALM has become one of the comparison standards 
for new super-resolution analysis algorithms in the field. 

  
RainSTORM  
Contact G. Tamas and J. Sinko, University of Cambridge UK & University of Szeged, 

Hungary 
Reference Rees, E. J., Erdelyi, M., Schierle, G. S. K., Knight, A. & Kaminski, C. F. 

Elements of image processing in localization microscopy. J. Opt. 15, 094012 
(2013). 

Open-access https://laser.ceb.cam.ac.uk/research/resources/our-software 
Platform Matalb 
Class of algorithms Multi-emitter fitting 
Participation 2016 2D, AS, BP 
Note of the authors rainSTORM is a software written in MATLAB for evaluating single-molecule 

localization based microscopy measurement (PALM, (d)STORM etc.) or 
simulation (TestSTORM) data. Both localization and reconstruction are 
crucial steps in localization based microscopy image processing developed 
to achieve high quality final images with super-resolution. rainSTORM 
provides useful and unique features to analyze and filter single localizations 
to minimize the effects of artifacts, validate sample structures and 
implement high level data evaluation. The input image stack is processed 
using a localization algorithm (1D Single-Gaussian, 2D Single-Gaussian or 
2D Multi-Gaussian) and a background estimation method (constant or 
linear) selected from the options on the user interface. Users can also 
change the fitting algorithm parameters or apply chromatic offset calibration 
for the different color channels. The localizations are characterized and 
thresholded by pre-defined (but changeable) filters. From the accepted 
super-resolved data table with molecule positions, a preview image is 
created based on a simple 2D histogram method by default. For evaluating 
the entire image reconstruction process a series of plots can be generated 
from the accepted and even from the rejected data with the most important 

http://www.ucl.ac.uk/lmcb/users/ricardo-henriques


properties such as photon-count distribution, accepted/rejected localization 
on each frame, sigma distribution or Thompson precision. We also provide a 
time saving feature for batch processing a whole datafolder with a pre-
defined set of parameters and marker-free drift correction. 

  
RapidSTORM  
Reference Wolter, S. et al. rapidSTORM: accurate, fast open-source software for 

localization microscopy. Nat Meth 9, 1040–1041 (2012). 
Open-access http://www.super-resolution.biozentrum.uni-

wuerzburg.de/research_topics/rapidstorm/ 
Platform Stand-alone application 
Class of algorithms Single emitter fitting 
Participation 2016 2D, AS (run by an expert) 
Note of the authors 2D and astigmatic 3D single emitter fitting, least squares & MLE fitting (least 

squares used here). Software is optimized for high speed of analysis. 
  
SFP_Estimator  
Contact Manfred Kirchgessner and Frederik Gruell, Heidelberg University, Germany 
Reference Accelerating Image Analysis for Localization Microscopy with FPGAs - IEEE 

Conference Publication. Available at: 
https://ieeexplore.ieee.org/abstract/document/6044774/. (Accessed: 23rd 
April 2018) 
 

Open-access https://github.com/ManfredKi/SFP-Estimator 
Platform Stand-alone (QT C++) 
Class of algorithms Single emitter fitting 
Participation 2016 2D 
Note of the authors The Simple Fast Parallel Estimator, SFP Estimator, implements a Maximum 

Likelihood Algorithm that was optimized for simple computations, in order to 
increase computation speed. Therfore a uniform 2D Gaussian signal shape 
is assumed. As shown by comparisons with much slower iterative 
Levenbergh Marquardth fits in Matlab simulations, the detection efficiency 
and estimation accuracy is at least comparable. The SFP Estimator 
software benefits strongly from parallel execution implementing multiple 
threads for different tasks during image analysis, signal detection and 
localization. High signal density and intersecting signals define a weakness 
of the algorithm, but it dismisses signals that can hardly be separated 
automatically, in order to avoid false outputs. Even very weak signals of 
SNR of down to 3 can be reliably processed, but with decreased accuracy. 
The SFP Estimator algorithm is integrated in a very handy Gui, that 
implements Qt Widgets for easy user control and to display the result 
images. Only the few parameters are required to generate high resolution 
localization images: the pixel size of the input images, and the desired size 
of the pixels in the localization image and depending on the average signal 
strength the minimum threshold to accept a signal can be adjusted. Within 
seconds the SFP Estimator generates and displays a localization image. 
Even several ten thousands of signals can be quickly processed while the 
bottleneck is mainly defined by the number of images to be load from hard 
disk. 

  
SMAP-2016  
Contact Jonas Ries, EMBL, Heidelberg, Germany 

https://ieeexplore.ieee.org/abstract/document/6044774/


Reference Li, Y. et al. Real-time 3D single-molecule localization using experimental 
point spread functions. Nature Methods (2018). doi:10.1038/nmeth.4661 

Platform Matlab 
Class of algorithms Single-emitter fitting algorithm 
Participation 2016 2D, AS, BP, DH 
Note of the authors SMAP stands for “superresolution microscopy analysis platform” and is a 

MATLB based open-source software package for single-molecule 
localization microscopy fitting and data analysis. Its highly modular design 
makes extension with own plugins easy, and most of the commonly used 
analysis algorithms are already implemented (currently >100 plugins). To 
ensure intuitive and simple use in spite of the extensive functionality, we 
designed an efficient and configurable user interface. 
End-users find in SMAP a powerful, yet easy to use software to perform, 
whereas advanced users can easily incorporate their own algorithms with 
minimal effort. 
Features of SMAP include: 
- Various GPU and CPU based localization algorithms. 
- Fitting during the acquisition and rendering during fitting. 
- 3D via astigmatism, biplane and double helix PSF. 
- Compatible with a variety of image formats including metadata using the 
OME framework. 
- Dual-color via sequential or ratiometric imaging. 
- Powerful drift correction, fast grouping. 
- Various modules to evaluate localization statistics and resolution including 
FRC. 
- A real-time renderer for a google-maps like browsing of data. 
- Rendering in several layers to overlay different channels, files, 
reconstruction modes or Tiff images. 
- A real-time 3D renderer including stereoscopic images. 
- A powerful ROI manager to segment and annotate ROIs and process 
those with various evaluation plugins. 
 
Note: This is the 2016 version entered in the first iteration of the 2016 3D 
SMLM challenge. 

  
SMAP-2018  
Contact Yiming Li, Jonas Ries, EMBL, Heidelberg, Germany 
Reference Li, Y. et al. Real-time 3D single-molecule localization using experimental 

point spread functions. Nature Methods (2018). doi:10.1038/nmeth.4661 
Platform Matlab 
Class of algorithms Single-emitter fitting algorithm 
Participation 2016 2D, AS, BP, DH 
Note  This is the 2018 version of the SMAP software corresponding to the 

published software. Includes fitting to experimentally derived model PSF. 
  
SMFit  
Contact Hayato Ikoma, Electrical Engineering Department, Stanford University, USA 
Platform Julia 
Class of algorithms Matching pursuit algorithm for molecule candidates, sparsity constraint 
Participation 2016 2D 
Note of the authors Localization-based super-resolution microscopy is becoming a popular tool 

in biological research to clearly visualize structures at tens-of-nanometers 
scale. Recently, this method has been extended to handle high molecular 

https://doi.org/10.1038/nmeth.4661
https://doi.org/10.1038/nmeth.4661


density images by using sparsity-inducing optimization methods.  However, 
localization from high-density images is still a challenging task, and their 
performance is still limited compared to the localization from long-sequence 
images. Recently, another optimization algorithm, alternating descent 
conditional gradient method (ADCG), has been proposed to solve sparse 
spike deconvolution problem. In the present work, we demonstrate its 
practical usage for single-molecule localization microscopy on the training 
datasets of the localization Challenge 2016. ADCG fits multiple point spread 
functions to an image in a one-by-one manner, which requires analytical 
expression of the point spread function. This procedure suppresses false 
positive detections and can be performed on both 2D and 3D localization. 
Before applying ADCG, the input images are preprocessed with noise 
stabilization and background subtraction. To perform 2D localization, 
integrated Gaussian function is used as a point spread function. 

  
SMolPhot  
Contact Martti Pärs, Ardi Loot, Andreas Valdmann, Marko Eltermann, Mihkel Kree,  

University of Tartu, Institute of Physics, Tartu, Estonia 
Open-access https://bitbucket.org/ardiloot/smolphot-software/wiki/Home 
Platform Python 
Class of algorithms Single emitter fitting 
Participation 2016 2D, AS 
Note of the authors Our user friendly single-molecule localization microscopy software package 

features: a) preprocessors for noise filtering and background subtraction; b) 
uses astigmatism approach as a z-calibration tool for 3D localization; c) 
includes local-maxima, blob-detection and connected-component 
localization algorithms; d) 2D and 3D Gaussian point spread functions for 
fitting; e) uses post-processing which to filter molecules according to 
localization goodness classified by standard deviation of fitting parameters 
or any linear combinations of them defined by user; f) applies temporal 
correlation for enhancing localization accuracy by combining locations of 
single molecule over multiple frames. More details about our software 
project will be presented on (www.molphot.com). 

  
  
SOLAR_STORM  
Contact Yoon J. Jung and Nikta Fakhri, Fakri Lab, MIT, USA 
Platform Matlab / C 
Class of algorithms Matching pursuit algorithm for molecule candidates, sparsity constraint 
Participation 2016 DH 
Note of the authors In super-resolution imaging techniques based on single-molecule stochastic 

switching, a random subset of fluorescent emitters are imaged and localized 
for every imaging frame. In the post-processing step, the point spread 
function (PSF) is used to reconstruct images by localizing molecules with 
high precision. Attempts to reduce the image acquisition time are based on 
increasing the density of emitters which fluoresce in each frame. However, 
as the density of excited emitters increase, PSFs start to overlap and the 
conventional single molecule localization techniques fail. This is particularly 
a bigger problem for 3D localization due to the size of the 3D PSF. Here we 
introduce a fast and accurate compressive sensing algorithm for localizing 
fluorescent emitters in high density in 3D, namely sparse support recovery 
using Orthogonal Matching Pursuit and L1-Homotopy algorithm for 
reconstructing STORM images (SOLAR STORM). SOLAR STORM reduces 



computational complexity by combining Orthogonal Matching Pursuit with 
L1-Homotopy, and can be accelerated by parallel implementation with 
GPUs. This method will allow studying dynamics of densely labeled samples 
in daily experiments by providing fast and robust image reconstruction. 

  
STORMChaser  
Contact Anna Archetti, Institute of Physics, EPFL, Switzerland 
Platform Matlab 
Class of algorithms Single emitter fitting 
Participation 2016 DH 
Note of the authors Several methods have been developed for far-field single molecule (SM) 

localization microscopy: astigmatic imaging, double-helix (DH) point spread 
function (PSF), and interferometric PALM (iPALM). The DH-PSF based 
approach extends the axial range to approximately 2μm while maintaining 
good axial (up to 20nm) and lateral localization precisions (10nm). In order 
to localize the SM from the DH-PSF images many algorithms have already 
been implemented based on simple geometrical PSF models (least square 
(LS) based fitting [1] and center of mass based centroid) or those utilizing a 
maximum likelihood estimator (MLE). Both have their advantages (precision 
or speed) and have been successfully combined for traditional localization 
microscopy [2]. However, there exists no open-source DH-PSF localization 
routine that leverages the advantages of both classes of algorithm. To 
address this need, we are developing a fast and precise DH-PSF 
localization algorithm that we called STORMChaser. STORMChaser, written 
in a combined C++/Matlab environment, is showing promising preliminary 
results. 

  
ThunderSTORM  
Contact Martin Ovesny, Guy Hagen and Pavel Krizek, Charles University, Prague, 

Czech Republic  
Reference Ovesný, M., Křížek, P., Borkovec, J., Švindrych, Z. & Hagen, G. M. 

ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM 
data analysis and super-resolution imaging. Bioinformatics 30, 2389–2390 
(2014). 

Open-access http://zitmen.github.io/thunderstorm/ 
Platform ImageJ 
Class of algorithms Multi-emitter fitting 
Participation 2016 2D, AS,BP 
Note of the authors ThunderSTORM is an open-source, interactive, and modular plug-in for 

ImageJ designed for automated processing, analysis, and visualization of 
data acquired by single molecule localization microscopy methods such as 
PALM and STORM.  ThunderSTORM offers an extensive collection of 
processing and post-processing methods so that users can easily adapt the 
process of analysis to their data. ThunderSTORM also offers a set of tools 
for creation of simulated data and for quantitative performance evaluation of 
localization algorithms using Monte-Carlo simulations. 

  
TVSTORM  
Contact Jiaqing Huang, The Ohio State University, Columbus, OH, USA 
Reference Huang, J., Sun, M. & Chi, Y. Super-resolution image reconstruction for high-

density 3D single-molecule microscopy. in 2016 IEEE 13th International 
Symposium on Biomedical Imaging (ISBI) 241–244 (2016).  

Platform Matlab 



Class of algorithms Matching pursuit algorithm for molecule candidates, sparsity constraint 
Participation 2016 2D, AS 
Note of the authors Single-molecule localization based super-resolution microscopy achieves 

sub-diffraction-limit spatial resolution by localizing a sparse subset of 
stochastically activated emitters in each frame. Its temporal resolution, 
however, is constrained by the maximal density of activated emitters that 
can be successfully reconstructed. The state-of-the-art three-dimensional 
(3D) reconstruction algorithm based on compressed sensing suffers from 
high computational complexity and gridding error due to model mismatch. In 
this paper, we propose a novel super-resolution algorithm for 3D image 
reconstruction, dubbed TVSTORM, which promotes the sparsity of activated 
emitters without discretizing their locations. Several strategies are pursued 
to improve the reconstruction quality under the Poisson noise model, and 
reduce the computational time by an order-of-magnitude. Numerical results 
on both simulated and cell imaging data are provided to validate the 
favorable performance of the proposed algorithm and its application to 2D 
image reconstruction. 

  
WaveTracer  
Contact Adel Kechkar and Jean-Baptiste Sibarita, University of Bordeaux and 

Institute for Neuroscience, France 
Reference Kechkar, A., Nair, D., Heilemann, M., Choquet, D. & Sibarita, J.-B. Real-

Time Analysis and Visualization for Single-Molecule Based Super-
Resolution Microscopy. PLOS ONE 8, (2013). 

Platform Metamorph 
Class of algorithms Single emitter fitting 
Participation 2016 2D, AS 
Note of the authors WaveTracer is a module integrated into Metamorph software 

(https://www.moleculardevices.com/systems/metamorph-research-
imaging/metamorph-microscopy-automation-and-image-analysis-software). 
It is an optimized framework for 2D real-time, i.e., streaming, localization 
and reconstruction, followed, if needed, by a post-acquisition 3D 
reconstruction. First, the images are analysed in real-time using a wavelet 
based algorithm which we optimized for speed using a mix of CPU/GPU 
implementation. If 3D computation is required, positions and intensities of all 
localized molecules are stored into memory. Second, astigmatism based 3D 
localization is performed sequentially to the real-time reconstruction by 
anisotropic Gaussian fitting around the stored molecules’ positions. 
Gaussian fittings are performed in parallel using GPU. 

  
WTM  
Contact Shigeo Watanabe, Jiro Yamashita, Teruo Takahashi, Tomochika 

Takeshima, Hamamatsu Photonics K.K. Japan 
Platform Stand-alone 
Class of algorithms Non-iterative (Template Matching) 
Participation 2016 2D 
Note of the authors Multi-emitter fitting algorithms will open the door to more applications of 

localization microscopy including live cell super resolution microscopy by 
addressing a significant limitation of single molecule localization microscopy, 
specifically the requirement for many (typically >5,000) raw image frames to 
produce meaningful reconstructions.  In addition to reducing the number of 
frames of data required, multi-fitter localization also reduces phototoxicity.  



Several algorithms have been developed for multi-emitter fitting. Although 
these algorithms are powerful tools for reducing the number of images 
needed for super resolution imaging, each of these methods has its own 
difficulties including a low limit for the number of overlapping emission point 
spread functions or requiring an accurate noise model of system and 
detector (especially for maximum likelihood based algorithms).  The 
computational execution time is too slow for widespread use.  
To address these issues, we developed the Wedged Template Matching 
(WTM) algorithm for localizing molecules with overlapping emission point 
spread functions.  Importantly, the computation time to reconstruct a high-
density final super resolution image is 20X - 1000X faster than other multi-
emitter fitting algorithms, suggesting that live cell super resolution imaging 
will be practical. The WTM algorithm also can be applied to a 2048 x 2048 
pixel sCMOS camera image.  

 220 
 221 
  222 



SUPPLEMENTARY REFERENCES 223 
1. Ober, R. J., Ram, S. & Ward, E. S. Localization Accuracy in Single-Molecule Microscopy. 224 

Biophys. J. 86, 1185–1200 (2004). 225 

2. Aguet, F., Van De Ville, D. & Unser, M. A maximum-likelihood formalism for sub-226 

resolution axial localization of fluorescent nanoparticles. Opt. Express 13, 10503–10522 227 

(2005). 228 

3. Chao, J., Ward, E. S. & Ober, R. J. Localization accuracy in single molecule microscopy 229 

using electron-multiplying charge-coupled device cameras. Proc. SPIE 8227, (2012). 230 

4. Chao, J., Ward, E. S. & Ober, R. J. Fisher information theory for parameter estimation in 231 

single molecule microscopy: tutorial. JOSA A 33, B36–B57 (2016). 232 

5. Gibson, S. F. & Lanni, F. Experimental test of an analytical model of aberration in an oil-233 

immersion objective lens used in three-dimensional light microscopy. JOSA A 9, 154–166 234 

(1992). 235 

6. Takeshima, T., Takahashi, T., Yamashita, J., Okada, Y. & Watanabe, S. A multi-emitter 236 

fitting algorithm for potential live cell super-resolution imaging over a wide range of 237 

molecular densities. J. Microsc. 0, 238 

7. Henriques, R. et al. QuickPALM: 3D real-time photoactivation nanoscopy image 239 

processing in ImageJ. Nat Meth 7, 339–340 (2010). 240 

8. Lew, M. D., von Diezmann, A. R. & Moerner, W. E. Easy-DHPSF open-source software 241 

for three-dimensional localization of single molecules with precision beyond the optical 242 

diffraction limit. Protoc. Exch. 2013, (2013). 243 

9. Dedecker, P., Duwé, S., Neely, R. K. & Zhang, J. Localizer: fast, accurate, open-source, 244 

and modular software package for superresolution microscopy. J. Biomed. Opt. 17, 245 

126008 (2012). 246 

10. Quan, T. et al. Ultra-fast, high-precision image analysis for localization-based super 247 

resolution microscopy. Opt. Express 18, 11867–11876 (2010). 248 



11. Tahmasbi, A., Ward, E. S. & Ober, R. J. Determination of localization accuracy based 249 

on experimentally acquired image sets: applications to single molecule microscopy. Opt. 250 

Express 23, 7630–7652 (2015). 251 

12. Niu, L. & Yu, J. Investigating Intracellular Dynamics of FtsZ Cytoskeleton with 252 

Photoactivation Single-Molecule Tracking. Biophys. J. 95, 2009–2016 (2008). 253 

13. Wang, Y., Quan, T., Zeng, S. & Huang, Z.-L. PALMER: a method capable of parallel 254 

localization of multiple emitters for high-density localization microscopy. Opt. Express 20, 255 

16039–16049 (2012). 256 

14. Shtengel, G. et al. Interferometric fluorescent super-resolution microscopy resolves 257 

3D cellular ultrastructure. Proc. Natl. Acad. Sci. 106, 3125–3130 (2009). 258 

15. Wolter, S. et al. rapidSTORM: accurate, fast open-source software for localization 259 

microscopy. Nat. Methods 9, 1040–1041 (2012). 260 

16. Li, Y. et al. Real-time 3D single-molecule localization using experimental point spread 261 

functions. Nat. Methods (2018). doi:10.1038/nmeth.4661 262 

17. Kechkar, A., Nair, D., Heilemann, M., Choquet, D. & Sibarita, J.-B. Real-Time 263 

Analysis and Visualization for Single-Molecule Based Super-Resolution Microscopy. 264 

PLOS ONE 8, e62918 (2013). 265 

18. Babcock, H., Sigal, Y. M. & Zhuang, X. A high-density 3D localization algorithm for 266 

stochastic optical reconstruction microscopy. Opt. Nanoscopy 1, 1–10 (2012). 267 

19. Babcock, H. P. & Zhuang, X. Analyzing Single Molecule Localization Microscopy 268 

Data Using Cubic Splines. Sci. Rep. 7, 552 (2017). 269 

20. Rees, E. J., Erdelyi, M., Schierle, G. S. K., Knight, A. & Kaminski, C. F. Elements of 270 

image processing in localization microscopy. J. Opt. 15, 094012 (2013). 271 

21. Ovesný, M., Křížek, P., Borkovec, J., Švindrych, Z. & Hagen, G. M. ThunderSTORM: 272 

a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-273 

resolution imaging. Bioinformatics 30, 2389–2390 (2014). 274 

22. Boyd, N., Schiebinger, G. & Recht, B. The Alternating Descent Conditional Gradient 275 

Method for Sparse Inverse Problems. SIAM J. Optim. 27, 616–639 (2017). 276 



23. Huang, J., Sun, M., Ma, J. & Chi, Y. Super-Resolution Image Reconstruction for 277 

High-Density Three-Dimensional Single-Molecule Microscopy. IEEE Trans. Comput. 278 

Imaging 3, 763–773 (2017). 279 

24. Soubies, E., Blanc-Féraud, L. & Aubert, G. A Continuous Exact $\ell_0$ Penalty 280 

(CEL0) for Least Squares Regularized Problem. SIAM J. Imaging Sci. 8, 1607–1639 281 

(2015). 282 

25. Min, J. et al. FALCON: fast and unbiased reconstruction of high-density super-283 

resolution microscopy data. Sci. Rep. 4, 4577 (2014). 284 

26. Babcock, H. P., Moffitt, J. R., Cao, Y. & Zhuang, X. Fast compressed sensing 285 

analysis for super-resolution imaging using L1-homotopy. Opt. Express 21, 28583–28596 286 

(2013). 287 

27. Min, J., Carlini, L., Unser, M., Manley, S. & Ye, J. C. Fast live cell imaging at 288 

nanometer scale using annihilating filter-based low-rank Hankel matrix approach. in (eds. 289 

Papadakis, M., Goyal, V. K. & Van De Ville, D.) 95970V (2015). doi:10.1117/12.2187393 290 

28. Pan, H., Simeoni, M., Hurley, P., Blu, T. & Vetterli, M. LEAP: Looking beyond pixels 291 

with continuous-space EstimAtion of Point sources. Astron. Astrophys. 608, A136 (2017). 292 

29. Martens, K. J. A., Bader, A. N., Baas, S., Rieger, B. & Hohlbein, J. Phasor based 293 

single-molecule localization microscopy in 3D (pSMLM-3D): An algorithm for MHz 294 

localization rates using standard CPUs. J. Chem. Phys. 148, 123311 (2017). 295 

 296 


	List of PARTICIPANTS TO THE CHALLENGE 2016
	Ricardo Henriques, LMCB - MRC Laboratory for Molecular Cell Biology, UCL, UK
	Supplementary References

