
Supplementary Note

h2
g from narrowed DHS peaks

Based on the hypothesis that most regulatory sites lie at the center of the called DHS peaks, we considered
the enrichment after progressively narrowing the DHS annotations. Specifically, we trimmed the ends of
each DHS peak to a maximum length such that the resulting DHS annotation size is 1%, 5%, and 10%
of the genome (without removing any individual peaks). We then tested these three narrowed annotations
in two models: a univariate model where h2g is inferred from only the narrowed DHS component, thereby
including any tagged heritability from other functional categories; and a six component model where the
full DHS component was replaced with the narrowed DHS component and remaining DHS SNPs distributed
into the intron and other components. In both models, we find the DHS centers to capture substantially
more heritability than their size (Table S6), with the 1% annotation explaining 61.0% of the total h2g in the
univariate model and 19.8% of the total h2g in the multivariate model (P = 2.6× 10−6). For comparison, the
coding component covering roughly 1% of the genome explains 30.0% of the total h2g in a univariate model.

Information content of functional enrichment

Our estimates of the relative significance of different h2g enrichment scenarios were directly dependent on
the standard error and overall sample size analyzed. Here, we consider an alternative figure of merit which
relies only on the fraction of h2g in each category. We borrow from information theory the concept of entropy,
which is a measure of uncertainty in the distribution of a random variable. Given P (Xi), the probability

mass function of a random variable, entropy can be quantified as H = −
a∑

i=1

P (Xi)logP (Xi). Depending on

the distribution and log-base, this is equivalent to the number of bits required to encode an observation,
with higher entropy implying lower predictability. Applying this to functional categories, we define P (Xi)
as the normalized probability of a SNP in the category being causal, equal to the product of the % h2g and
the % SNPs for that category. We then compute the entropy as outlined previously. Table S20 demonstrates
the resulting entropy from multiple enrichment scenarios, with entropy inversely correlated to the individual
category significance. Highest entropy was observed for an enrichment scenario that only accounted for
the (least significant) promoter category, and lowest entropy was observed for an enrichment scenario that
accounted for all six categories. Interestingly, the six-category genotyped enrichment yielded higher entropy
than a hypothetical DHS-only imputed enrichment. This formulation of “functional entropy provides a
standard metric for comparing real and hypothetical enrichment scenarios completely independent of sample
size and data platform.

Robustness of variance-component estimates

Jackknife estimates of h2g variance

The analytical standard error used for significance testing was accurate in our simulations (Table S21) and
has previously been shown to be robust in real data1, but can be biased when the number of causal variants
is very small2. We assessed this directly with a weighted block-jackknife estimate of the enrichment by
dropping each chromosome in turn and re-computing the h2g

3. This estimate also captures true variation in
enrichment across the chromosomes, and is therefore highly conservative. Though we observe little difference
in genotyped data (Table S8), the jack-knife estimate of imputed % h2g (71% s.e. 7.7%, Table S9) is indeed
more conservative than the analytical estimate (79% s.e. 6.6%), but the enrichment is still highly significant
(P = 5.5× 10−13) and the overall results not substantially effected.
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Impact of shared controls

We evaluated potential biases due to the use of shared controls by shifting the functional categories and per-
forming the entire genotyped meta-analysis procedure to achieve an empirical null distribution. Specifically,
over 1,000 consecutive indices, we shifted all functional annotations ahead by 2MB (moving regions that
crossed the chromosome boundary into the next chromosome) thereby preserving the total h2g, total sample
relatedness, and relative dependence between categories but permuting any relationship to true function.
For each shifted annotation, we re-computed GRMs from the genotyped data and estimated functional en-
richment within each trait, as well as the meta-analysis value across all 11 traits, yielding 1, 000× 6 shifted
meta-analysis estimates. We observed no inflation of p-values within each study, further supporting the ro-
bustness of the empirical standard error. As expected, we did observe inflation in the meta-analysis p-values
ranging from λGC of 1.26 (coding) to 1.70 (intergenic). We adjusted the standard errors observed in real
data by the corresponding

√
λGC, which yielded adjusted p-values that remained significant for all categories

but UTR (Table S10).

Impact of case-control ascertainment

Recent work4–6 has shown that liability-scale estimates of h2g from REML can be biased downward in
dichotomous traits with strong ascertainment.4,5 propose an alternative estimator based on Haseman-Elston
regression7 and show that it eliminates bias. Briefly, this approach regresses the product of normalized
phenotypes on the genetic covariance (off-diagonal GRM entries) for all unique pairs of samples; with the
resulting slope used as an estimate of observed-scale h2g and converted to liability-scale. This method can
be extended naturally to multiple components, where the product of phenotypes is regressed onto GRM
entries from each analyzed component in a multiple linear regression. Here, we compared the method and
transformation of5 to the transformed REML estimator described in the main text. We also evaluated
the impact of incorporating principal components as fixed-effects to account for genetic ancestry. This is
particularly important for the schizophrenia (SP) and multiple sclerosis (MS) cohorts, which were ascertained
in a way that induces correlations between ancestry and phenotype. All analyses were performed using
the same set of GRMs computed from 1000G imputed data, with regression and regression fixed-effects
implemented as described in5. In all instances, analytical error covariance estimates were used and rescaled
with the delta method to compute standard errors. Note that the standard error for regression makes
assumptions about independence that are strongly violated and are therefore only presented for completeness.

We observed little difference between the two methods, with regression yielding an average estimate of 1.05×
higher than REML and an overall R2 = 0.95 between the two methods (across 11 traits, Table S11). The
relative performance was similar when considering only the % h2g from the DHS component (Tabel S12),
with regression yielding 1.04× higher estimates than REML on average and an overall R2 = 0.94. Meta-
analysis across traits within each method did not yield significant differences, with regression identifying DHS
enrichment of 5.8× (s.e. 0.45) compared to REML identifying DHS enrichment of 5.1× (s.e. 0.42). A large
difference between the two methods was observed in the SP and MS cohorts without fixed effects, where
liability-scale regression estimates were 10.00 and 2.91 respectively (Table S11), significantly higher than
REML without fixed-effects. This suggests that regression-based estimates may be particularly sensitive to
the confounding effects of ancestry.

Potential confounding from principal components

Recently,8 demonstrated that h2g can vary significantly when principal components are also included as
fixed-effects, as a function of the number of included eigenvectors. To assess the presence of this bias in our
data, we re-compute the previous joint estimates of ĥ2g with an increasing number of eigenvectors included as

fixed-effects. We observe no significant fluctuation of the ĥ2g, with the average estimate over 1-20 eigenvector
covariates of 0.184 having a standard deviation of 0.002 suggesting a tight estimate unbiased by the fixed
effects.
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Unbiased estimates of h2
g from rare and common variants

Variant normalization

We considered weather the SNPs used in construct the GRM should be normalized by their observed variance
or the expected variance 2p(1− p) based on the minor allele frequency p. We performed simulations for the
two normalization schemes and two effect-size distributions. Under the infinitesimal model where every
variant explains the same amount of phenotypic variance in expectation, we observed no differences between
the normalizations for any class of SNPs. Under the neutral model where effect-size is proportional to the
minor allele frequency, we observed a significant difference between the two normalizations when rare variants
were included in the analysis, with the 2p(1−p) scaling resulting in a significant upwards bias. These findings
indicate that rare variants have slight but consistent deviations from Hardy-Weinberg equilibrium that can
affect the variance-component estimate under the 2p(1 − p) normalization. To account for this, we use the
observed variance to normalize markers in all analyses of rare variants.

LD-induced bias

Previous work using GWAS chip data has shown that genetic architectures with systematically unusual
LD patterns at causal variants can yield biased estimates of h2g, and that this bias can be reduced by
adjusting the input GRM to account for LD1,2,9. Unlike GWAS chip data, which is a relatively uniform
sample of common variants, exome chip consists predominantly of densely-typed rare variants in short exons
(Table S18), potentially exacerbating this bias.

As in previous work, we evaluate potential biases by simulating phenotypes from diverse disease architectures
using the real exome chip variants. We randomly sampled 1,000 causal variants from coding SNPs with
minor allele frequency below a fixed threshold ranging from 0.01 to 0.1. Effect sizes for each causal variant
were drawn from the standard Normal and applied to the normalized SNP (such that all SNPs explain
the same variance in expectation) with random noise added to yield an h2g = 0.5. We then analyzed
the performance of a single variance component which accounts for all SNPs versus two jointly modeled
components9 corresponding to rare (MAF < 0.01) and common (MAF ≥ 0.01) SNPs, where we compute
the h2g estimate as the sum of the corresponding h2g,rare and h2g,common. In both scenarios we also consider
the impact of LD adjusting the GRMs internally using the LD-residual method1 (h2gLD), resulting in a total
of four inference models.

Figure S12 shows the distribution of inferred h2g over the 10 disease architectures and 4 inference models.
Under the un-adjusted single-component model - corresponding to the typical variance-components strategy
- we observe both kinds of bias depending on the causal allele frequency cutoff. When causal variants
are primarily rare (MAF ≤ 0.02) the mean estimate is significantly deflated down to 0.45, whereas when
causal variants are more common (MAF ≤ 0.1) the mean estimate is significantly deflated up to 0.59. LD
adjustment of the single component appears to fix the downwards bias, with mean estimate no lower than
0.49 (not significantly different from 0.50) but does not completely mitigate the upwards bias, with a mean
estimate up to 0.57. On the other hand, splitting the data into two components for rare and common
SNPs entirely removes the upwards bias but introduces downwards bias in most instances where causal
variants can be common. Combining the two strategies and using two internally LD-adjusted components
yields completely unbiased estimates with no disease architecture exhibiting h2g significantly different from
0.5. A simulation where effect-sizes were applied to the un-normalized SNP directly (such that rare SNPs
explained less variance in expectation) showed similar patterns (Fig. S13), with the two-component, LD-
adjusted strategy resulting in highest overall accuracy but slight downwards bias when common variants
were primarily causal.

Exome heritability “contaminated” by non-coding SNPs

Another potential source of confounding when estimating exome h2g is heritability from nearby non-coding
variants that is tagged by exonic variants due to LD. Because our interest is in identifying the purely exonic
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contribution to phenotype, we consider the heritability from these non-coding variants to “contaminate” our
estimates. Using the GWAS chip data from this cohort allows us to quantify the amount of contamination
expected due to common non-coding SNPs.

We simulated a standard polygenic phenotype with h2 = 0.50 coming exclusively from 5,000 randomly
selected GWAS chip non-coding SNPs and then inferred h2g using variance-components constructed from
coding SNPs. No coding SNPs were used to generate the phenotypes, and if no contamination was present
we expect the inferred h2g to equal zero. However, we found that all coding variants together accounted for
an average of 17.4% of the non-coding heritability (Table S22), significantly different from zero. This further
broke down to slight but non-significant contamination of 2.7% at rare coding variants (MAF < 0.01) and
a highly significant average of 11.8% from common coding variants (MAF ≥ 0.01), consistent with common
variants being generally better tags of nearby common variation. Given the small physical size of the exome,
contamination of 11.8% of the non-coding heritability could substantially bias the estimates from coding
variants when estimated directly from exome chip data. To account for this contamination, we model an
additional component consisting of the non-coding GWAS variants. When we conditioned in this way and
estimate using a three variance-component model, we see statistically zero heritability attributed to the rare
and common coding components. Because we only have genome-wide GWAS chip data available, which does
not include rare variants and these variants are notoriously difficult to impute, the non-coding component
is unlikely to account for contamination from rare non-coding variants. However, our simulations show
that rare variants not significantly contaminated by common variants, and therefore even less likely to be
contaminated by other rare variants.

Exome heritability tagged by non-coding SNPs

We set out to estimate the fraction of exome h2 that is tagged by non-coding SNPs from the GWAS chip
and 1,000 Genomes imputation. We simulate two groups of standard additive phenotypes from the rare and
common exome variants, respectively, and infer h2g,non-coding of these phenotypes from the non-coding SNPs.

The ratio of ĥ2g,non-coding to simulated h2g,exome gives us an estimate of the fraction of exome heritability

tagged by non-coding variants. In 10 simulations from chromosome 22 with h2g,exome = 0.5 the average ratio
is 0.85 for common coding variants and 0.11 for rare coding variants (Table S23). However, the tagging
between components is fully accounted for by a joint, three component model (Table S24).

h2
g of known or candidate variants

PolyPhen2 functional prediction

We observed a significant enrichment in h2g at 6,600 loss of function variants, which collectively account
for 5.3% of the exonic SNP variance but explain 24.3% of the exonic h2g (permuted P = 0.02). We saw no
significant enrichment of h2g at coding sites that were predicted to be functionally important by PolyPhen210.
Comparing likelihoods between a model where variants were split into probably/damaging, benign/other,
and non-coding components to the model with only coding and non-coding components yielded no significant
difference by 1df LRT (P = 0.13).

Known schizophrenia GWAS loci

Having identified no significant rare-variant h2gLD at all coding regions, we are interested in quantifying this
phenomena at the set of loci known to be associated with schizophrenia. To do so, we construct variance-
components only from SNPs at the 22 identified by the PGC in a large meta-analysis11 and estimate them
jointly with a component for the remaining non-coding variants genome-wide. As expected, we find the union
of all non-coding GWAS variants at these loci to harbor significant heritability of 0.018 (0.004) (Table S29).
However, we do not see any significant heritability from the coding variants at these classes when modeled
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jointly with the other component. This is consistent with our genome-wide finding that common non-coding
variants explain a substantial fraction of trait heritability and tag nearly half of the common coding variation.

Known psychiatric disease genes

We partitioned h2g at the set of 1,796 “composite genes reported by Purcell et. al.12 to exhibit enrichment of
rare disruptive mutations, modeled jointly with exome chip variants in the remaining genes and non-coding
GWAS chip variants as separate components. However, no significant h2g was observed at either the entire
set of composite variants (h2g = 0.014 s.e. 0.012) or the rare composite variants (h2g = 0.008 s.e. 0.012).

Estimating collapsed-variant heritability

For a given cohort, the variance of the heritability estimate tends to grow with the number of markers
analyzed. Borrowing from gene-based burden association tests13,14, we considered a strategy for reducing the
variance of this estimate by collapsing rare variants in a gene into a single polymorphic site when computing
the GRM. Over the full data-set, this procedure collapses the 60,000 effective SNPs into approximately 16,000
genes that contain polymorphic SNPs. This technique also has the benefit of incorporating singleton variants
that violate the traditional variance-components model normality assumptions. However, as with burden-
tests, the model assumes that all SNPs have identical normalized effect-sizes and will exhibit downwards
bias when this assumption is violated.

Formally, the method recodes each gene as a multi-allelic “pseudo-SNP” where samples that carry a minor
allele below frequency threshold fmax are considered carriers of the pseudo-SNP allele equal to the number
of such variants they carry. The pseudo-SNPs are then normalized to have mean=0 and variance=1 and
a new GRM is computed over the normalized pseudo-SNPs as in the standard model. The corresponding
measure of h2g,collapsed is estimated from this collapsed variance-component, jointly with a single non-coding

component, which fully accounts for the minimal tagging of h2g from non-coding regions by collapsed variants
(Table S25). Our simulations show that disease architectures with > 50% non-causal (or non-deleterious)
variants capture substantially less heritability as to make this approach underpowered compared to the
standard model considering all SNPs (Table S26, S27). The exome chip was designed with primarily non-
synonymous variants, and we did not assess differences according to variant class.

In the collapsed analysis of schizophrenia, we observe a substantial reduction in standard error but do not find
any allele-frequency threshold that yields a result significantly different from zero (Table S28). This does not
invalidate the use of collapsed-gene burden tests for association and genetic mapping because the individual
collapsed gene is still a fundamentally informative unit of association. It does, however, demonstrate that
the maximum variance that can be explained by such methods is guaranteed to be substantially lower than
that of association with the full model, as has been shown in previous analyses of burden tests15. For
singleton variants, we can place a 95% upper bound on collapsed h2g at 0.014. This is consistent with the
recent observation from exome sequencing that the burden of rare coding variants in a subset of 1,796
enriched genes explains 0.4%-0.6% of the variance in schizophrenia12, and indicates that additional h2g could
be identified by considering all rare variants in a variance-components model.

Functional enrichment from GWAS summary statistics

To emulate a single large GWAS study, we merged all of the imputed WTCCC2 traits into a single cohort of
32,752 samples and an intersection of 4,594,547 imputed variants. As in previous simulations, we generated
50 quantitative phenotypes with total h2 = 0.50 by sampling causal variants from imputed DHS and coding
categories with 79% and 8% (respectively) and all other categories uniformly, for a total of 8,300 causal
SNPs. For each simulated phenotype, we then computed standard χ2 statistics overall the imputed SNPs.

We followed the method described in Schork et. al.16 to construct stratified QQ-plots. Using the European
1000 Genomes samples as a reference, we computed the sum of r2 correlations between each GWAS SNP and
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any neighboring variant (within 1Mbp, including the SNP itself) belonging to a non-intergenic functional
category, so that every GWAS SNP had five LD-based scores. A variant was then considered part of a
category if the corresponding score was ≥ 1. As in16, intergenic variants were defined as those having a score
of zero to every other category. Association statistics for each category were divided by the λGC observed
in intergenic variants and QQ-lines computed. Similarly, we followed the method described in Maurano
et. al.17 to quantify p-value enrichment. Over increasingly restrictive p-value thresholds, we computed the
fraction of SNPs passing a given threshold that belong to each category, divided by the genome-wide fraction
of SNPs in that category. We note that17 only considered non-coding variants, but examined all markers.
For both algorithms, the mean and standard error were computed separately for each p-value bin over 50
simulations.

To ensure that the enrichment at significant loci was consistent with the genome-wide estimates, we parti-
tioned h2g from SNPs lying within 1Mb of published GWAS loci for each trait (see Web Resources) (Fig. 8).
Due to a small number of loci for some traits, the DHS component was jointly analyzed with only a single
component including all non-DHS SNPs. We note that the choice of region size may impact the absolute
enrichment, with larger regions expected to appear more like the genome-wide enrichment and yield a con-
servative estimate of the difference. We again observed a highly significant DHS enrichment in imputed data
as well as a significant difference between the genotyped and imputed results (P = 7.9× 10−18). Indeed, the
DHS enrichment of genotyped SNPs at known loci was not statistically significant (1.1x, P=0.46) and we
observed a marginally significant difference between the DHS enrichment at known loci versus genome-wide
in the imputed data (3.6x versus 5.5x, P=0.004). This difference suggests that loci harboring large-effect,
genome-wide significant SNPs may be less enriched for DHS variants than the rest of the genome. We stress
that this p-value does not survive adjustment for multiple testing and the previously described biases in h2g
and is only suggestive.

Expected risk prediction accuracy

We computed the expected GBLUP prediction accuracy using the previously derived18,19 relationship that
M effective SNPs, N training samples, and h2g are expected to yield prediction r2 = (h2gh

2
g)/(h2g + M/N).

We did not account for ascertainment because prediction was assessed by cross-validation. For the PGC
analysis, the observed-scale h2g = 0.49, N = 10000 and we assumed M = 60000, which is expected to yield
genome-wide r2 = 0.037. Assuming independent variance-components, we similarly estimated expected r2

of the functionally stratified predictor by evaluating (jointly estimated) component-specific h2g directly in the
data, estimating M from the fraction of SNPs in each component, and summing all of the functional expected
r2 to compute the genome-wide prediction. For the PGC analysis, this yielded an expected genome-wide
r2 = 0.077, or a 2.08× increase over the standard predictor. However, in the actual data we observed a
genome-wide r2 = 0.043 and a stratified r2 = 0.046 (OLS R2 reported here, Nagalkerke R2 reported in main
text for consistency with published estimates). This increase of only 1.07× is much lower than expected,
indicating that the assumption of component independence is strongly violated and significant enrichments
in component h2g do not necessarily translate into increased prediction accuracy.
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