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1 Calculating Maximum Interface Curvature in a Pillar Array

We assume that all competition boundaries between pillars make right angles with the pillar edges. We
also center the system such that we eliminate a parameter and then the equation of the circle of interest
is

x2 + (y − yo)2 = r2, (1)

where yo is the y coordinate of the circle of maximum curvature and r is the radius of that circle. We
assume that the center-to-center separation of the pillars is ∆x and the radius of each pillar is R. We
characterize the point of intersection between the pillar edge and the circle of interest by the angle φ. Then
at the point of intersection (i) between the circle and the pillar the coordinates on the circle are

xi = −∆x

2
+R cos(φ) (2)

yi = R sin(φ) (3)

At that same point the slope of the circle must be equal to tan(φ).

The slope is found by taking the implicit derivative

∂

∂x

[
x2 + (y − yo)2 = r2

]
→ 2x+ 2(y − yo)yx = 0 → y′ = − x

y − yo
, (4)

∆x

φ
R

r

SI Figure 1: Schematic graphically depicting the pillar radius R, pillar separation ∆x, and angle φ.
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dx = 4, R =1 dx = 8, R =1 dx = 2.25, R =1 

SI Figure 2: Plots of maximum interface curvature as a function of pillar separation. The dashed lines
show the interface curvature as a function of the angle (φ) from low φ (blue) to high φ (yellow). The solid
red circle shows the circle whose corresponding competitive interface has the highest curvature given the
values of R and ∆x.

and using this result we can solve for yo and use that to find r2

( r
R

)2
=

(
δ − cos(φ)

sin(φ)

)2

→ r

R
=
δ − cos(φ)

sin(φ)
(5)

where the sign ambiguity is irrelevant, and we define δ = ∆x
2R . Then the minimum radius (maximum

curvature) lies at the angle given by

∂

∂φ

( r
R

)
= 0 → φc = tan−1

(√
1− 1

δ2
,
1

δ

)
(6)

where we use the four-quadrant tangent function, and upon substitution

rmin

R
=
√
δ2 − 1 (7)

and thus the maximum curvature is

κmax =
1

R
√
δ2 − 1

(8)

We note that as δ → ∞ the maximum curvature goes to zero and the circle that corresponds to the
maximum curvature is the circle whose diameter is ∆x. As δ → 1 (and hence ∆x → 2R) the maximum
curvature diverges.

1.1 Relationship to Competitive Asymmetry

We can calculate the maximum possible curvature for a particular lattice with values R and ∆x, and if a
particular level of competitive asymmetry, ε = 1

2(PB − PA), requires a higher curvature than this value,
the lattice in question will not stably support both species.

We know that such interfaces are flat for symmetric competition (ε = 0), while ε > 0 results in
curved interfaces. Additionally, the sharpness of the competitive interface is inversely related to 〈P 〉 =
1
2 (PA + PB). Thus dimensional arguments demand that the curvature of the competitive interface is set
by a function of the dimensionless competition asymmetry, ε/ 〈P 〉. The inverse natural length scale of
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SI Figure 3: (A) Plot of the interface curvature between two pillars with the indicated size and spacing. If
the ecologically equilibrated interface curvature is both less than the maximum curvature and lies to the
left of the maximum curvature then the dynamics provide a restoring force which stabilizes the interface,
otherwise, the interface is unstable. (B) Schematic matched to (A) that shows the zone of stable interface
angles φ in green (here 0 ≤ φ . π/4) and unstable zone in red. The end of the green zone and the black
circle both correspond to the maximum curvature shown in (A).
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SI Figure 4: A schematic of the unstable equilibrium between two unequal competitors, here with species
A (magenta) the stronger competitor (hence PA < PB). The competition zone has a width w set by the
natural length scale

√
D/r. The equilibrium curvature of the competitive interface (solid line) is positioned

such that the numerical advantage of the weaker competitor (B) is balanced against the higher potency of
the stronger competitor (A).

the system 1
λ =

√
r/D, sets the natural scale for curvature and thus to within a constant the interfacial

curvature in a stable competitive system must be

κcrit =

√
r

D
f

(
ε

〈P 〉

)
. (9)

where f is some function. Taylor’s theorem then suggests that for a sufficiently smooth function with small
dimensionless competitive asymmetries

κcrit ∝
ε

〈P 〉

√
r

D
(10)

which is supported by the data in Fig. 2B.
A geometric argument gives similar results; given two strains with unequal competitive fitness, we

postulate that at equilibrium (i.e. when the genetic boundary does not move) the ratio of competition
parameters PA and PB is equal to the ratio of the numeric advantage imposed by a curved interface (as
shown in Fig. 4). The width of the transition zone, w, is, to within an order one constant, set by the only
natural length scale in the system,

√
D/r, and hence

κcrit =
4

w

PB − PA
PB + PA

∝
√
r

D

ε

〈P 〉
. (11)

2 Modeling Extinction Time Distributions in Structured Environments

We seek to characterize the classes of dynamics observed during 3-way intransitive competition in our
anisotropic environmental simulations. The diagram below shows the states and transition rates between
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the three observed dynamical states, with L being limit-cycle (cyclic), C being chaos, and E being ex-
tinction. Extinction is a fully absorbing state (hence no arrows emerge from E). The cyclic state is
characterized by stable coexistence of all three species and hence the transition rate from L to E is strictly
modeled as zero. Our simulations are deterministic and hence for a given initial condition in a particular
environment the time course of transitions between these states is encoded by those initial conditions.
Thus the ensemble from which we draw trajectories that statistically follow this diagram is the ensemble
of random, spatially uncorrelated initial conditions, not a statistical ensemble over stochastic dynamical
processes.

2.1 Kinetic Model

We assume that for a given pillar size and spacing, there is a corresponding set of state-transition rates.
Over an ensemble of initial conditions, these rates are characterized by the number of observed transitions
of a particular type (CL, LC, or CE) per unit time. This model aims to determine the distribution of
arrival times into the extinct state and compare those predictions with the simulated distributions. The
distribution of arrival times p(t′) is related to the extinct ensemble fraction E by

dE ∝ p(t′)dt′ → p(t′) ∝ ∂E

∂t′
(12)

where the total integrated amount of E is 1 as t′ →∞ because E is a strictly absorbing state. This means
that all trajectories eventually end with extinction, though the time to extinction could be very long if, for
instance, specific values of pillar size and spacing result in kLC ∼ 0, noting that as ∆x→∞, kLC → 0.

Using this kinetic model, the following ODEs govern the probability of being in each state as a function
of time

L̇ = −kLCL+ kCLC (13)

Ċ = kLCL− (kCL + kCE)C (14)

Ė = kCEC (15)

Since this describes the time-dependent probability of being in a given state L̇+ Ċ + Ė = 0 and hence the
system is conservative. Given that Ė ∝ C, we note that C ∝ p(t) and hence seek to decouple the equations
into an equation strictly for C. Solving eqn. 14 for L we find

L =
1

kLC

(
Ċ + (kCL + kCE)C

)
(16)

and then differentiating with respect to time we find

L̇ =
1

kLC

(
C̈ + (kCL + kCE)Ċ

)
. (17)

Then substituting these into eqn. 13 we have

L̇ = −kLCL+ kCLC → 1

kLC

(
C̈ + (kCL + kCE)Ċ

)
= −kLC

1

kLC

(
Ċ + (kCL + kCE)C

)
+ kCLC (18)

which simplifies to
C̈ + (kLC + kCL + kCE)Ċ + kLCkCEC = 0. (19)

We note that the two initial conditions that connect to our simulations are C(0) = Co and L(0) = Lo,
which then translate into C(0) = Co and

Ċ(0) = kLCLo − (kCL + kCE)Co. (20)
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In order to reduce the parameter space and reveal natural scales, we non-dimensionalize this equation by
choosing the only time scale that behaves well as single kij → 0, namely

t′ = tτ → τ = (kLC + kCL + kCE)−1. (21)

Then switching to the dimensionless t as the time variable, we have

C̈ + Ċ +KC = 0 (22)

with the dimensionless constant

K =
kLCkCE

(kLC + kCL + kCE)2
. (23)

The rate constants are all positive, kij ≥ 0, and hence it can be shown that

0 < K <
1

4
(24)

for all values of kij
1. This also transforms the initial condition to

Ċ(0) = τ (kLCLo − (kCL + kCE)Co) = τkLCLo + (τkLC − 1)Co. (25)

2.1.1 Initial Condition C(0) = 0 L(0) = 1

There are two solutions of interest, namely when (Co, Lo) = (0, 1) and (Co, Lo) = (1, 0). Any other initial
condition is a linear combination of these two solutions. Let us examine (Co, Lo) = (0, 1), which has the
solution

C(t) = τkLC
e−

t
2

α
sinh (αt) (26)

with α =
√

1−4K
2 . Then building on the fact that Ė = kCEC = p(t)

p01(t) = Ė = τkCEC(t) =
K

α
e−

t
2 sinh (αt) (27)

where the factor of τ comes from the non-dimensionalization and the subscript 01 in p refers to the initial
conditions used to derive this version of p. On long time scales∫ ∞

0
p01(t)dt =

K

α

∫ ∞
0

e−
t
2 sinh (αt) dt =

1
4 − α

2

α

∫ ∞
0

e−
t
2 sinh (αt) dt = 1 (28)

for all values of 0 < α < 1
2 , meaning all trajectories lead to the fully absorbing state of extinction.

2.1.2 Initial Condition C(0) = 1 L(0) = 0

Examining (Co, Lo) = (1, 0), combining terms and simplifying, this has the solution

C(t) =
e−

t
2

2α
[2α cosh (αt) + (2τkLC − 1) sinh (αt)] (29)

and then p10(t) = Ė = τkCEC(t) and hence

p10(t) =
K

α
e−

t
2 sinh(αt) + γ

e−
t
2

2α
[2α cosh(αt)− sinh(αt)] (30)

1Examining K′ = ab
(a+b)2

, which is maximized when a = b and hence K′ = 1
4
. Then changing to K′′ = ab

(a+b+c)2
with c > 0

and hence 0 < K′′ ≤ K′.
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SI Figure 5: (A) Schematic showing dynamical states (limit-cycle / cyclic L, chaotic C, and extinct E)
and the mean rates of transition that connect them. (B) The family of extinction time distributions as a
function of dimensionless time and the dimensionless rate parameter K for C(0) = 0 and L(0) = 1 that
result from the kinetic model in (A).

with ∫ ∞
0

p10(t)dt = 1. (31)

The dimensionless constant γ = τkCE is bounded to be 0 < γ < 1. We note that the first term in the
above equation is the solution for p01(t) that we found for C(0) = 0 and L(0) = 1, that solution integrates
to one and hence that demands that∫ ∞

0
e−

t
2 [2α cosh(αt)− sinh(αt)] dt = 0, (32)

which it does. Then we note that both γ and K are functions of kij and hence are not fully independent
parameters. Examining the structure of K and γ, first we note that

K =
kLC
kCE

γ2 (33)

and that the maximum value of γ is when kCL = 0 and thus as a function of kLC and kCE , the maximum
value of γ is

γ =
1

1 + kLC
kCE

→ γ =
1

1 + K
γ2

(34)

Thus the maximum value of K is bounded by

K ≤ γ(1− γ) (35)

and the minimum is zero. Any arbitrary (arb) initial condition is a weighted sum of these two solutions
for the extinction probability

parb = (1− f)p01(t) + fp10(t) (36)
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SI Figure 6: The two dimensionless rate parameters K and γ are not fully independent of each other
because they are both functions of kij and kij > 0. As shown in this text, K ≤ γ(γ − 1), here shown by
the bounding parabola, where the values within that region are fractally organized. We do not yet know
the full mapping from this kinetic parameter space to the morphological space specified by R and ∆x.

with 0 < f < 1 being the weighting. Then because p01 and p10 share terms this simplifies to

parb(t) =
K

α
e−

t
2 sinh (αt) + fγ

e−
t
2

2α
[2α cosh(αt)− sinh(αt)] . (37)

While we know that K and γ obey K ≤ γ(1− γ), f is an independent parameter.
Examining our simulations, the fit parameters to the output distributions have a wide range of K,

given that 0 < K < 1/4, suggesting that γ ∼ 1
2 for most simulations and hence that kCE ∼ kCL + kLC .

Likewise, we found that fitting bounded f � 1. This parameter regime suggests that simulations tend
to start off in the limit-cycle phase and migrate to the chaotic phase before going extinct. In fitting the
extinction time distributions, we fit for both K and τ , ignoring γ because f � 1, and we allowed for a
small time translation t→ t− to to account for the ‘grow-in’ period from random initial conditions.

3 Classification of Dynamic States

4 Extinction Dynamics in Asymmetric Lattices
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K = 0.1, γ = 0.5, f = 0.01

K = 0.2, γ = 0.5, f = 0.01

SI Figure 7: Examples of the extinction time distributions for different values of K, γ, and f that resemble
what we see from our simulations.
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SI Figure 8: Classification of intransitive community dynamics. (A) For every simulation, the temporal
autocorrelation was calculated using the vectorized pixel intensities of all species for every non-pillar pixel in
the system. (B) The resulting autocorrelation matrix was then used to determine if the spatial distributions
of species recapitulated themselves to a sufficiently high degree for at least two cycles; if so, the simulation
was classified as cyclic at that time point. A threshold correlation of 0.8 was chosen (red line), as this
was the level at which isotropic simulations were reliably classified as cyclic over the entire simulation
(excluding grow-in and time points fewer than two cycles from the end of the simulation). The resulting
time-dependent classifications were used to generate Figure 5A. The data for this figure was taken from a
simulation with L/(1.29λ) = 100, P = 0.1, R/(1.29λ) = 6 and ∆x = 3R. (C) Snapshots of this simulation
corresponding to distinct dynamic regimes. After a short grow-in period, the simulation relaxed into a
limit cycle driven by a single wave center about one of the pillars (right upper-middle at t = 100 and 300).
This wave center was unstable (note asymmetric species distributions about the pillar at t = 100 and 300
and wave widths at t = 300), persisting for several hundred doubling times until collapse of the wave center
resulted in an extinction cascade at t = 700 (trivial autocorrelations of the victorious monoculture that
persisted until the end of the simulation are not included in the analysis).
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SI Figure 9: Randomized pillar arrays do not affect qualitative community outcomes. Pillar arrays were
randomized by drawing (A) pillar spacing (∆x) or (B) pillar radius (R) from a uniform distribution of
varying width. In (A) pillar positions were randomized by jittering pillar positions, with the displacement
direction chosen randomly and the displacement magnitude drawn from a uniform distribution with mean
5R and standard deviation as indicated in panel headings. In (B) the positions remained symmetric but
the pillar radii varied, drawn from a uniform distribution with the indicated mean and variance. Example
randomized arrays are shown at right. For each standard deviation, three independent realizations of
the jittered grid of pillars were generated and manually validated to ensure pillars were not overlapping
or spaced too closely for the accurately simulate diffusion. Ten random initial condition replicates were
performed for each of the three grids, giving 30 total simulations for each standard deviation in ∆x or R.
Fractions within subheadings of each panel indicate the observed frequency of extinction for each condition.
In all cases, extinction frequency did not show a significant dependence on the standard deviation of ∆x nor
R, whereas extinction frequency showed a strong dependence on mean lattice parameters, consistent with
observations in the main text. Plotted points are jittered along the x-axis to reduce overlap. Simulation
parameters are L/(1.29λ) = 100 and P = 0.1, with indicated pillar radius R and spacing ∆x = 5R before
addition of random variation as indicated.
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