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Figure S1: Bar chart representing contributions of each of the N=90 AAL brain areas to the fronto-parietal FC state of interest 

(Vc(n)>0 in red, blue otherwise) across clustering solutions k = 6 through k = 10.  In each clustering solution, the probability of 

occurrence of this state was significantly reduced following the psilocybin injection.  The Bonferroni-corrected p-values (i.e. p-

val * k)  were:  0.022 (k = 6); 0.002 (k = 7); 0.008 (k = 8); 0.026 (k = 9) and 0.019 (k = 10). Regional contributions to the cluster 

centroid of interest show a high level of consistency across the clustering solutions. 
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Figure S2: Bar chart representing contributions of each of the N=90 AAL brain areas to the globally coherent state of interest 

(Vc(n)>0 in red, blue otherwise) across clustering solutions k = 6 through k = 10.  In each clustering solution, the probability of 

occurrence of this state was higher following the psilocybin injection, surviving the Bonferroni correction for k = 7 and k = 10.   

We note that prior to the Bonferroni correction, all the p-values were significant (α = 0.05).  The Bonferroni-corrected p-values 

(i.e. p-val * k) were: 0.13 (k = 6); 0.047 (k = 7); 0.14 (k = 8); 0.10 (k = 9); 0.032 (k = 10).  Regional contributions to the cluster 

centroid of interest show a high level of consistency across the clustering solutions. 
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Figure S3 - 3D embedding of FC patterns (different projection angle). Identical results as in Fig. 3 in the main text, displayed 
using a different perspective of the same 3D scatter plots.  

 

 I II III IV V VI VII 

I   0.399 0.408 0.000 0.285 0.095 0.146 

II 0.082   0.216 0.261 0.499 0.114 0.095 

III 0.184 0.006   0.355 0.069 0.079 0.069 

IV 0.217 0.426 0.002   0.247 0.077 0.041 

V 0.006 0.171 0.038 0.145   0.366 0.380 

VI 0.173 0.285 0.250 0.055 0.116   0.198 

VII 0.042 0.494 0.040 0.176 0.397 0.388   
 

Table ST1 - The p-values for each entry of the switching matrix shown in Figure 5 of the main text.   
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Bipartition based on the leading eigenvector of the coherence matrix 

 

In this section, we will show that a bipartition based on the signs of the entries of the leading eigenvector of the 

coherence matrix is optimal to produce two communities 𝐶1and 𝐶2 where coherence is maximised within and 

minimised between. We will follow very closely the prior works of Newman and colleagues (1, 2). 

 

Let us first define the coherence matrix 𝐵1 at time 𝑡: 

 

𝐵𝑖𝑗(𝑡) = cos (𝜃𝑖(𝑡) − 𝜃𝑗(𝑡)) . 

 

As it is a symmetric, real valued matrix, the spectral theorem applies and thus, for each time 𝑡,  there exists an 

eigenbasis {𝑣𝑖}𝑖=1
𝑁 , with associated eigenvalues {𝜆𝑖}𝑖=1

𝑁 , where N is the number of ROIs. We also define a community 

indicator variable 𝑠𝑖  such that : 

 

𝑠𝑖 = {
1, 𝑖𝑓 𝑖 ∈ 𝐶1

−1, 𝑖𝑓 𝑖 ∈ 𝐶2
. 

 

The aim is to make the within community coherence higher than the between communities coherence, i.e. group 

nodes that have similar phases and maximise the difference between the two communities average phases. To 

formalise this, we define the following quantity: 

 

𝑃 = ∑(cos(𝜃𝑖(𝑡) − 𝜃𝑗(𝑡)))

𝑖,𝑗

(𝑠𝑖𝑠𝑗 + 1)/2 

 

that we will aim to maximise. 

 

The only difference with Newman's derivation is presence of the constant term 𝐴 = ∑ (cos(𝜃𝑖(𝑡) − 𝜃𝑗(𝑡)))𝑖,𝑗 /2, 

and we can rewrite 𝑃 as: 

 

𝑃 =
1

2
∑(cos(𝜃𝑖(𝑡) − 𝜃𝑗(𝑡)))

𝑖,𝑗

𝑠𝑖𝑠𝑗  + 𝐴, 

 

                                                           
1 We use 𝐵 instead of 𝑑𝐹𝐶, as in the main text, for the readability of the equations. 
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and rewriting the first term in matrix notation reads : 

 

𝑃 = 𝑠′𝐵𝑠 + 𝐴, 

 

with ′ denoting the transposition operation. We now express 𝐵 and 𝑠 in the eigenbasis of 𝐵 : 

 

𝐵 = ∑ 𝜆𝑖𝑣𝑖𝑣𝑖 ′

𝑖

, 𝑠 = ∑ 𝑎𝑖𝑣𝑖

𝑖

, 

 

and can now rewrite 𝑃 as : 

 

𝑃 = ∑ 𝑎𝑖𝑣𝑖
′𝜆𝑖𝑣𝑗𝑣𝑗

′𝑎𝑘𝑣𝑘

𝑖,𝑗,𝑘

 

= ∑ 𝑎𝑖
2𝜆𝑖

𝑖

 

= ∑(𝑠′𝑣𝑖)

𝑖

2

𝜆𝑖 , 

 

where we used the orthonormality of the eigenvectors and 𝑎𝑖 = 𝑠′𝑣𝑖. 

 

It is easy to see that 𝑠′𝑣𝑖  will be maximised if : 

𝑠𝑗 = {
1, 𝑖𝑓 𝑣𝑖

𝑗
≥ 0

−1, 𝑖𝑓 𝑣𝑖
𝑗

< 0
. 

 

Finally, we order the eigenvalues such that 𝜆1 ≥ ⋯ ≥ 𝜆𝑁, thus 𝑃 is maximised if the signs of 𝑠 are set based on the 

eigenvector corresponding to 𝑣1, the leading eigenvector. 

 

Proportion of coherence explained by the leading eigenvector 

 

Let us first define the coherence matrix 𝐵2 at time 𝑡: 

 

                                                           
2 We use 𝐵 instead of 𝑑𝐹𝐶, as in the main text, for the readability of the equations. 
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𝐵𝑖𝑗(𝑡) = cos (𝜃𝑖(𝑡) − 𝜃𝑗(𝑡)). 

 

As it is a symmetric, real valued matrix, the spectral theorem applies and thus, for each time 𝑡, there exists an 

eigenbasis {𝑣𝑖}𝑖=1
𝑁 , with associated eigenvalues {𝜆𝑖}𝑖=1

𝑁  

 

𝐵(𝑡) = ∑ 𝜆𝑖𝑣𝑖𝑣𝑖 ′

𝑖

= ∑ 𝜆𝑖𝑃𝑖

𝑖

= 𝑉𝛬𝑉′, 

 

where N is the number of ROIs ,the columns of 𝑉 are the eigenvectors of 𝐵, 𝛬 is the diagonal matrix of eigenvalues 

and 𝑃𝑖  is the projector onto the subspace spanned by 𝑣𝑖. We order the eigenvalues in decreasing order : 𝜆1 ≥ ⋯ ≥

𝜆𝑁. 

 

Using Principal Component Analysis (PCA), we can quantify the variance explained by each eigenspace of 𝐵, and thus 

the proportion of the signal explained by the leading eigenvector. 

 

The entries of the 𝑖𝑡ℎ column of 𝐵 are the similarities between the phase of the ROI 𝑖 and the others ROIs. We center 

the phases of 𝐵 by removing the mean, and refer to quantities related to the centered similiarities with a subscript 

𝑐 : 

 

𝐵𝑐 =  𝐵 − 𝟏𝐵𝑚𝑐′ , 

 

where 𝐵𝑚𝑐  is the vector of the mean of the columns of 𝐵. Thus 𝐵𝑐
′𝐵𝑐  is the covariance matrix of the centered 

similarities between each pair of phases. Using standard PCA, we have : 

 

𝐵𝑐
′𝐵𝑐(𝑖) = 𝑉𝑐𝛬𝑐𝑉𝑐

′𝑉𝑐𝛬𝑐𝑉𝑐
′ = 𝑉𝑐𝛬𝑐

2𝑉𝑐
′ ⇔ 𝑉𝑐

′𝐵𝑐
′𝐵𝑐𝑉𝑐 = 𝛬𝑐

2. 

 

The ratio 𝜆𝑐,𝑖
2 / ∑ 𝜆𝑐,𝑖

2
𝑗  is then the proportion of the total variance in the similarities of the phases captured by the 𝑖𝑡ℎ 

eigenspace. As the eigenvalues are ordered in decreasing order, the space associated with 𝜆𝑐,1 will explain the most 

variance, and if 𝜆𝑐,1
2 > ∑ 𝜆𝑐,𝑖

2
𝑖>1 , it explains most of the variance in the similarities between phases. 
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SI Figure 1. The leading eigenvector captures most of the variance in the similarities between phases at all time points. 

Histograms of the ratio of the leading eigenvalue with respect to the sum of all eigenvalues at each time point, for all subjects in 

each of the 4 experimental conditions. We find consistently that the leading eigenvalue represents more than 50% of all 

eigenvalues, thus confirming that  𝜆1
2 > ∑ 𝜆𝑖

2
𝑖>1 . 
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