
Supplementary Figures 
 
Figure	S1.	Schematic	view	of	the	model	as	described	in	Methods.	
	
	
Figure	S2.	Examples	of	the	adaptive	cancer	fitness	landscapes	used	in	this	study.		
	
These	examples	illustrate	how	the	fitness	landscapes	look	like	when	different	
parameters	are	used.	a-d,	four	different	selection	intensities	are	used	in	this	study:	
	σ 2 =10 	(a),			σ 2 = 40(b),		σ 2 =70 (c)	and		σ 2 =100 (d).	e-f,	to	illustrate	how	selections	are	
correlated	along	traits	in	the	fitness	landscape	two	selection	correlations	are	used	(see	
equations	(9)	and	Methods	for	more	details):		σ 2 =10 ,			ρS =0.9 (e)	and			σ

2 =10 ,			ρS =0.5
(f).		
	
	
Figure	S3.	Cancer	evolution	trajectories	with	a	static	TME	optimum	and	different	initial	
conditions.	
	
These	results	demonstrate	that	under	a	static	TME	optimum	the	initial	fitness	of	cancer	
cell	determines	whether	subsequent	new	driver	mutations	could	be	observed.		If	the	
initial	fitness	is	high	(		w0 =1 )	there	is	no	observation	of	any	new	driver	mutation	(a).	If	a	
lower	fitness	is	assumed	(		w0 <1),	there	is	a	maximum	of	three	driver	mutations	
observed	(b).	However,	if	we	assume	the	mutational	variance			m2 =1×10−5 	and	the	
selection	intensity		σ 2 =1 ,	the	cancer	with	an	initial	fitness			w0 =0.9 	can	adapt	to	the	
static	TME	optimum	(c)	by	many	“mini	driver”	mutations	(d).	
	
	
Figure	S4.	Mean	cancer	cell	fitness	under	various	selection	intensities	and	TME	conditions.		
	
These	results	indicate	that	selection	intensity	and	TME	changing	speed	can	significantly	
affect	the	evolutionary	trajectories	of	a	cancer.	Cancer	populations	evolve	under	four	
different	rates	of	TME	change	(		v1 =0.05 ,			v1 =5×10

−3
,			v1 =0.05 ,			v1 =5×10

−4 	and	

		v1 =5×10
−5 )	with		σ 2 =10 	(a),		σ 2 = 40(b),		σ 2 =70 (c)	and		σ 2 =100(d).	Error	bars	are	

s.e.m.	and	each	point	represents	100	independent	simulations.	The	line	represents	a	
simple	linear	regression	fit.		Due	to	immediate	population	extinction	data	are	not	shown	
for			v1 =0.5 .	The	dash	line	represents	mean	fitness	0.5.	When	mean	population	fitness	
reaches	this	value	it	is	destined	to	be	extinct.	
	
	
Figure	S5.	Mean	selection	coefficients	of	adaptive	mutations	as	per	figure	S4.	
	
These	results	indicate	the	selection	intensity	and	TME	changing	speed	play	a	significant	
role	in	cancer	adaptive	evolution.	
	
	



	
Figure	S6.	Cancer	adaptive	evolution	with	different	rates	of	selection	correlation	between	
traits.		
	
In	a	slowly	changing	TME	the	phenotypic	effects	of	fixed	mutations	faithfully	capture	the	
selection	correlation,	which	is	defined	by	the	fitness	function	(see	equation	(9)	and	
Figure	S2	for	different	shapes	of	the	fitness	landscape	due	different	selection	correlation	
values).	Populations	evolve	under	four	different	selection	correlations	and	TME	change	
rates.	a,	e,	i	and	m,			ρS =0.25 .	b,	f,	j	and	n,			ρS =0.5 .	c,	g,	k	and	o,			ρS =0.75 .		d,	h,	l	and	p,	

		ρS =0.9 .	
	
	
Figure	S7.	Mean	fitness	and	selection	coefficient	of	cancer	adaptation	in	a	randomly	
changing	TME.		
	
These	results	show	that	the	increased	variance	in	random	changes	of	the	TME	acts	
against	adaptive	cancer	evolution,	which	leads	to	decreased	mean	population	fitness	
and	increased	selection	coefficients	of	fixed	mutations.	The	mean	fitness	(a)	and	
selection	coefficient	(b)	are	plotted	against	different	standard	deviations	(SD)	of	the	
random	TME	change.	Error	bars	are	the	standard	error	of	the	mean	(s.e.m.),	and	each	
point	represents	100	independent	simulations.		
	
	
Figure	S8.	Mean	fitness	and	selection	coefficient	of	cancer	adaptation	in	a	directionally	
changing	TME	with	a	random	component.		
	
Here	it	is	similar	to	Figure	S7	that	increased	variance	in	the	directionally	changing	TME	
acts	against	adaptive	cancer	evolution.	The	mean	fitness	(a)	and	selection	coefficient	(b)	
are	plotted	against	different	standard	deviations	(SD)	of	the	random	change.	Different	
colours	represent	different	speed	of	the	directional	change.	Error	bars	are	the	standard	
error	of	the	mean	(s.e.m.),	and	each	point	represents	100	independent	simulations.		
	
	
Figure	S9.	Mean	fitness	and	selection	coefficient	of	cancer	adaptation	in	a	
cyclically/periodically	changing	TME.	
	
These	results	suggest	that	when	the	period	of	the	cyclically	changing	TME	is	fixed	the	
increased	amplitude	can	decrease	mean	population	fitness	and	increase	the	selection	
coefficients	of	fixed	mutations,	which	act	against	adaptive	cancer	evolution.	The	mean	
fitness	(a)	and	selection	coefficient	(b)	are	plotted	against	different	amplitudes	of	the	
TME	change.	The	period	is	set	at			P =360 .	Error	bars	are	the	standard	error	of	the	mean	
(s.e.m.),	and	each	point	represents	100	independent	simulations.		
	
	
Figure	S10.	Cancer	phylogenetic	trees	under	different	changing	TME	dynamics.		
	
These	results	demonstrate	that	it	is	possible	to	use	phylogenetics	to	infer	the	underlying	
TME	selection	dynamics.	Example	phylogenetic	trees	are	shown	for	simulated	cancers	



under	three	different	TME	dynamics,	which	were	longitudinally	sampled	every	100	
generations	for	a	fixed	period	of	time.	a-d,	four	illustrative	phylogenetic	trees	are	shown	
for	a	directionally	changing	TME	with	four	different	speeds:			v1 =0 (static	TME,	a),	

		v1 =5×10
−5 (b),			v1 =5×10

−4 (c)	and			v1 =5×10
−3 (d).	A	static	or	slowly	changing	TME	(a-b)	

leads	to	long	internal	branches	expanding	in	parallel	for	long	periods	of	time	indicating	
weak	stabilizing	selection,	while	a	moderately	changing	TME	(c)	leads	to	continual	
selection	of	branches	with	beneficial	mutations	and	therefore	promote	adaptive	
evolution.	A	fast-changing	TME	(d)	leads	to	strong	selection	and	shorter	side	branches	
indicating	fast	extinction	of	these	branches.			e-h,	four	phylogenetic	trees	are	shown	for	a	
randomly	changing	TME	with	four	different	standard	deviations:		δ =0.5 (e),		δ =1 (f),	
	δ =1.5 (g)	and		δ =2(h).	Here	the	higher	variance	of	the	random	TME	changing	
dynamics	leads	to	shorter	side	branches	indicating	higher	rates	of	stochastic	death	of	
these	cancer	cells,	which	obviously	does	not	promote	adaptive	evolution	as	no	obvious	
“imbalanced”	trees	can	be	observed.			i-l,	four	phylogenetic	trees	are	shown	for	a	
cyclically	changing	TME	with	four	different	amplitudes:	(i),			A=2 (j),			A= 4 (k)	and			A=6
(l).	Here	low	amplitude	of	TME	changing	cycle	leads	to	a	phylogeny	showing	recent	
clonal	expansion	indicating	relatively	stable	population	size	under	weak	selection	(i).		
Interestingly,	we	show	above	that	moderate	amplitudes	promote	adaptive	evolution	(j),	
which	is	evident	here	from	the	phylogenies’	ladder-like	and	spindly	tree	topology	
(strongly	imbalanced)	with	long	trunk	and	shorter	side	branches.	The	temporal	signals	
in	the	phylogeny	also	reflect	a	cyclic	selection	pattern,	where	long	branches	and	ladder-
like	shorter	branches	appear	in	tandem	(e.g.,	see	j).	Note	that	the	clonal	interference	is	
apparent	in	all	cases	particularly	when	the	TME	changing	dynamics	lead	to	strong	
selection,	e.g.,	a	faster	changing	TME	(d)	obviously	leads	to	strong	clonal	competition	
and	faster	extinction	of	these	shorter	side	branches	comparing	with	a	slower	changing	
TME	if	there	are	no	additional	large	beneficial	mutations	supplied	(c).	All	cancers	are	
simulated	for	10000	generations	except	(d),	where	the	cancer	went	extinct	at	
approximately	2300	generations.	The	maximum	population	size	is	set	at			N =105 .	The	
scale	bar	represents	the	number	of	cell	divisions.	
	
	
Figure	S11.	Illustration	of	the	fitness	landscape	shifts	due	to	different	anticancer	treatment	
strategies.		
	
These	figures	illustrate	how	the	optimum	of	a	fitness	landscape	moves	quantitatively	
and	how	the	reduced	selection	intensity	leads	to	a	“flatter”	fitness	landscape	in	cancer	
treatments.	a,	fitness	landscape	changes	with	different	(constant)	TME	optimum	due	to	
different	treatments.	b,	the	optimum	of	the	fitness	landscape	changes	from			z0

opt =0 	to	

		z1
opt =5 .	c,	fitness	landscape	optimum	changes	from			z0

opt =0 	to			z1
opt =8 .	d,	fitness	

landscape	optimum	changes	from			z0
opt =0 	to			z1

opt =8 	and	selection	intensity	from	
	σ 2 =10 	to		σ 2 = 40 .	Clearly,	the	shorter	distance	that	an	optimum	travels	gives	a	less	
“steep”	valley	for	the	cancer	cells	to	cross	(evolve	resistance).	Similarly,	the	reduced	
selection	intensity	(a	“flatter”	fitness	landscape)	also	gives	the	cancer	cells	a	less	“steep”	
valley	to	cross	from	the	original	fitness	landscape	to	the	new	one	(compare	c	and	d).		
	
	



Figure	S12.	Cancer	adaptation	with	different	resistance	mechanisms	under	treatment	
strategies	maintaining	a	constant	TME	optimum.		
	
Different	resistance	mechanisms	lead	to	different	3D	spatio-temporal	patterns	of	sub-
clonal	evolution.	Example	3D	snapshots	are	taken	sequentially	after	the	sudden	change	
of	TME	optimum	(		z1

opt =8 ,	σ 2 =10 )	due	to	treatments	(a-d),	however,	the	population	has	
three	different	resistance	mechanisms	to	avoid	population	extinction.	a,	the	cancer	cells	
have	more	loci	contributing	to	adaptation	(		L=50 	).	We	find	two	adaptive	mutations	at	
generation	113	and	generation	1033,	which	are	born	in	generation	101	and	228	with	
		s =38.281 	and				s =0.5976 ,	respectively.	b,	the	cancer	cells	have	higher	mutation	
rates(	µ = 4×10−4 	).	In	this	case	we	find	one	adaptive	mutation	at	generation	977	born	at	
generation	101	with	a	very	large	selection	coefficient,			s =57.3361 ,	indicating	very	
strong	selection	leading	to	the	fixation	of	this	mutation	with	very	large	fitness	effect.	c,	
the	cancer	cells	evolve	in	a	fitness	landscape	with	lower	selection	intensity(	σ 2 = 40 	).	
The	population	fitness	is	summarized	in	d	for	each	treatment	strategy.	
	
	
Figure	S13.	Cancer	adaptation	under	treatment	strategies	that	continuously	change	the	
TME	optimum.		
	
Treatment	strategies	continuously	modify	the	TME	optimum	leading	to	different	3D	
patterns	of	spatio-temporal	patterns	of	sub-clonal	evolution	and	evolutionary	
trajectories.	Example	3D	snapshots	are	taken	sequentially	after	treatments	(a-d).	Three	
different	treatments	maintaining	three	different	rates	of	TME	change:			v1 =0.5(a),	

		v1 =0.05 	(b)	and			v1 =0.005 	(c),	respectively.	The	population	fitness	plotted	against	
generation	time	is	summarized	in	d	for	each	treatment	strategy.	Note	that	the	sample	is	
taken	for	every	generation,	and	the	dashed	line	indicates	when	the	treatment	starts	
(after	generation	100).	
	 	



Supplementary Movies 
	
Movie	S1.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	static	TME	with	

		v1 =0 .	
	
Movie	S2.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	TME	change	rate	

		v1 =0.5 .	
	
Movie	S3.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	TME	change	rate	

		v1 =0.05 .	
	
Movie	S4.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	TME	change	rate	

		v1 =5×10
−3 .	

	
Movie	S5.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	TME	change	rate	

		v1 =5×10
−4 .	

	
Movie	S6.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	TME	change	rate	

		v1 =5×10
−5 .	

	
Movie	S7.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	TME	change	rate	

		v1 =5×10
−5 .	In	this	simulation	we	have	initial	fitness			w =0.1 ,	initial	population	size	

		N =104 .	
	
Movie	S8.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	TME	change	rate	

		v1 =0.05 ,	initial	fitness			w =0.1 ,	initial	population	size			N =107 .	
	
Movie	S9.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	TME	change	rate	

		v1 =5×10
−3 ,	initial	fitness			w =0.1 ,	initial	population	size			N =107 .	

	
Movie	S10.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	TME	change	rate	

		v1 =5×10
−4 ,	initial	fitness			w =0.1 ,	initial	population	size			N =107 .	

	
Movie	S11.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	TME	change	rate	

		v1 =5×10
−5 ,	initial	fitness			w =0.1 ,	initial	population	size			N =107 .	

	
Movie	S12.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	TME	change	rate	

		v1 =0.05 ,	initial	fitness			w =0.5 ,	initial	population	size			N =107 .	
	
Movie	S13.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	TME	change	rate	

		v1 =5×10
−3 ,	initial	fitness			w =0.5 ,	initial	population	size			N =107 .	

	



Movie	S14.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	TME	change	rate	

		v1 =5×10
−4 ,	initial	fitness			w =0.5 ,	initial	population	size			N =107 .	

	
Movie	S15.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	TME	change	rate	

		v1 =5×10
−5 ,	initial	fitness			w =0.5 ,	initial	population	size			N =107 .	

	
Movie	S16.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	cyclically	
changing	TME.	The	amplitude	is	set	at			A= 4 	with	period			P =360 .	
	
Movie	S17.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	cyclically	
changing	TME.	The	amplitude	is	set	at			A=6 	with	period			P =360 .	
	
Movie	S18.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	treatment	
strategy	maintaining	a	constant	TME	optimum			z1

opt =5 .		
	
Movie	S19.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	treatment	
strategy	maintaining	a	constant	TME	optimum			z1

opt =6 .		
	
Movie	S20.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	treatment	
strategy	maintaining	a	constant	TME	optimum			z1

opt =7 .		
	
Movie	S21.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	treatment	
strategy	maintaining	a	constant	TME	optimum			z1

opt =8 .		Note	that	in	this	simulation	the	
cancer	population	went	extinct.	
	
Movie	S22.	A	simulation	movie	showing	3D	cancer	adaptation	with	a	resistance	
mechanism	under	a	treatment	strategy	maintaining	a	constant	TME	optimum	at			z1

opt =8 .		
The	resistance	mechanism	here	is	the	number	of	loci	contributing	to	adaptation	is	
increased	to			L=50 	from			L=5 .	Comparing	to	Movie	S20,	the	population	extinction	is	
avoided.	
	
Movie	S23.	A	simulation	movie	showing	3D	cancer	adaptation	with	a	resistance	
mechanism	under	a	treatment	strategy	maintaining	a	constant	TME	optimum	at			z1

opt =8 .		
The	resistance	mechanism	here	is	increased	mutation	rate	from		µ = 4×10−5 	to	

	µ = 4×10−4 .	Comparing	to	Movie	S20,	the	population	extinction	is	also	avoided.	
	
Movie	S24.	A	simulation	movie	showing	3D	cancer	adaptation	with	a	resistance	
mechanism	under	a	treatment	strategy	maintaining	a	constant	TME	optimum	at			z1

opt =8 .		
The	resistance	mechanism	here	is	that	the	TME	selection	intensity	is	reduced	from	
	σ 2 =10 	to		σ 2 = 40 	(the	width	is	increased	see	Supplementary	Figure	S2a	and	2b).	
Comparing	to	Movie	S20,	the	population	extinction	is	also	avoided.	
	
	


