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SUPPLEMENTARY MATERIAL 1

ON THE EVOLUTION OF MIGRATION IN CHANGING ENVIRONMENTS

Oana Carja, Uri Liberman, and Marcus W. Feldman

Consider an infinite, haploid population divided into two demes Ex and Ey, with

different selection regimes. Individuals in this population are characterized by two biallelic

loci, a major locus A/a and a modifier locus B/b, where the major locus controls the

phenotype of an individual and the fitness of its phenotype, while the modifier locus is

assumed to be selectively neutral and controls the migration rate between the two demes.

We study the evolution of the modifier locus B/b and determine the evolutionarily

stable migration rate as a function of the pattern of fluctuation in selection experienced

by the population. We track the frequencies of the four genotypes AB, Ab, aB and ab

in the population. At each generation, there is recombination and selection in each deme

separately, after which individuals may migrate between the two demes. As in general

analyses of neutral modifiers (see Feldman and Liberman 1986), we frame the question in

terms of the stability of the fixation equilibrium with only B present in the population,

producing migration rate mB , to invasion by allele b, which produces migration rate mb.

We assume these rates to be the same from Ex to Ey and from Ey to Ex. This symmetry

assumption makes our analysis more tractable but relaxing this assumption should not

change the general conclusions of the model.

We first present the case when selection is constant in time in both demes; this will

serve as our reference model. We then consider regimes in which there is fluctuating

selection within each of the demes. In particular, we ask how the rate of environmental

volatility affects the stable migration rate.
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CONSTANT SELECTION

Let the fitnesses and the frequencies of the four genotypes in each deme be

Deme Ex Ey

Genotype AB Ab aB ab AB Ab aB ab

Fitness wx1 wx2 wx3 wx4 wy1 wy2 wy3 wy4

Frequency x1 x2 x3 x4 y1 y2 y3 y4.

(S1.1)

Genotypes carrying the B allele at the modifier locus migrate from one deme to the other

deme at rate mB , while the migration rate is mb when b is present at the modifier locus.

The recombination rate between the two loci is r in both demes.

After recombination, selection, and migration, in that order, the change in frequency

of the genotypes (x′1, x
′
2, x
′
3, x
′
4 and y′1, y

′
2, y
′
3, y
′
4) in the two demes from one generation to

the next is given by

Mxx
′
1 = (1−mB)

wx1(x1 − rDx)

wx
+mB

wy1(y1 − rDy)

wy

Mxx
′
2 = (1−mb)

wx2
(x2 + rDx)

wx
+mb

wy2(y2 + rDy)

wy

Mxx
′
3 = (1−mB)

wx3
(x3 + rDx)

wx
+mB

wy3(y3 + rDy)

wy

Mxx
′
4 = (1−mb)

wx4
(x4 − rDx)

wx
+mb

wy4(y4 − rDy)

wy

(S1.2a)

and

Myy
′
1 = (1−mB)

wy1(y1 − rDy)

wy
+mB

wx1
(x1 − rDx)

wx

Myy
′
2 = (1−mb)

wy2(y2 + rDy)

wy
+mb

wx2
(x2 + rDx)

wx

Myy
′
3 = (1−mB)

wy3(y3 + rDy)

wy
+mB

wx3
(x3 + rDx)

wx

Myy
′
4 = (1−mb)

wy4(y4 − rDy)

wy
+mb

wx4
(x4 − rDx)

wx
,

(S1.2b)

with

Dx = x1x4 − x2x3 Dy = y1y4 − y2y3 (S1.3)

wx =

4∑
i=1

wxi
xi wy =

4∑
i=1

wyiyi (S1.4)
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wx1 = wx2 wy1 = wy2

wx3
= wx4

wy3 = wy4 .
(S1.5)

Equation (S1.5) is due to the assumption that the modifier locus is selectively neutral.

Mx and My are normalizing factors such that
∑4
i=1 x

′
i = 1 and

∑4
i=1 y

′
i = 1.

We are able to derive closed-form mathematical results if we assume the following

symmetry relations among the fitness parameters:

wx1
= wx2

= wy3 = wy4 = (1 + s)

wx3 = wx4 = wy1 = wy2 = 1.
(S1.6)

Thus, if we assume that s > 0, phenotype A is preferred in deme Ex, while phenotype

a is preferred in deme Ey and there is symmetry in these fitness differences between the

demes.

Boundary equilibria with symmetric selection

Suppose that initially only B is present at the modifier locus (x2 = x4 = y2 = y4 = 0).

We use the notations x1 = x and y3 = z; therefore, x3 = 1− x, y1 = 1− z The change in

the frequencies on the boundary where only B is present is given by

x′ = (1−mB)
(1 + s)x

wx
+mB

1− z
wz

z′ = (1−mB)
(1 + s)z

wz
+mB

1− x
wx

,

(S1.7)

with
wx = (1 + s)x+ (1− x) = 1 + sx

wy = (1 + s)z + (1− z) = 1 + sz.
(S1.8)

A simple computation shows that

z′ − x′ =
1 + s

(1 + sx)(1 + sz)
(z − x). (S1.9)

Hence, at equilibrium, either z = x or

1 + s

(1 + sx)(1 + sz)
= 1. (S1.10)

Let

x = (x1, x2, x3, x4) y = (y1, y2, y3, y4). (S1.11)

When z = x, at equilibrium, we have the following result, similar to that in Balkau and

Feldman (1973):
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Result 1.

1. On the boundary where only the B allele is present, there is a unique symmetric

equilibrium (x∗,y∗)

x∗ = (x∗, 0, 1− x∗, 0) y∗ = (1− x∗, 0, x∗, 0) . (S1.12)

Here, x∗ is the unique positive root of the quadratic equation

Q(x) = sx2 + [(s+ 2)mB − s]x+mB = 0. (S1.13)

2. (x∗,y∗) is internally stable on the boundary where only the B allele is present.

3. When s > 0 and 0 < mB < 1, then x∗ > 1
s+2 . If, in addition, 0 < mB < 1

2 then

x∗ > 1
2 .

Proof of Result 1.

1. When z = x at equilibrium, the mean fitnesses in the two demes are equal, wx =

1 + sx = 1 + sz = wy, and the equilibrium equation resulting from (S1.7) reduces to

the quadratic equation (S1.13). Moreover, as 0 < mB < 1,

Q(0) = −mB < 0, Q(1) = (s+ 1)mB > 0, Q(±∞) > 0. (S1.14)

Therefore there is a unique root x∗ of (S1.13) with 0 < x∗ < 1.

2. “Near” (x∗,y∗) and on the boundary where only B is present, (z − x) is small and

from (S1.9) its change in magnitude, and thus the internal stability of (x∗,y∗), are

determined by the positive factor

C∗ =
1 + s

(1 + sx∗)(1 + sz∗)
. (S1.15)

(x∗,y∗) is internally stable if C∗ < 1, which, since x∗ = z∗ and s > 0, is the case if

and only if s (x∗)
2

+ 2x∗ > 1. Using the equilibrium equation (S1.13),

s (x∗)
2

+ 2x∗ = (1−mB)(s+ 2)x∗ +mB . (S1.16)
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Thus, as 0 < mB < 1, (S1.3) is greater than 1 if and only if x∗ > 1
s+2 . Since Q(1) > 0

and Q(x∗) = 0, we have x∗ > 1
s+2 if and only if Q

(
1
s+2

)
< 0. Indeed, when s > 0,

Q

(
1

s+ 2

)
= −s(s+ 1)

(s+ 2)
2 < 0, (S1.17)

as desired. Therefore x∗ > 1
s+2 , C∗ < 1, and (x∗,y∗) is internally stable.

3. When s > 0 and 0 < mB < 1, x∗ > 1
s+2 . In addition

Q

(
1

2

)
= −s

4
(1− 2mB). (S1.18)

Hence, if 0 < mB < 1
2 , Q

(
1
2

)
< 0 and, as Q(1) > 0, we have x∗ > 1

2 .

On the boundary when only B is present, we may also have equilibria where z 6= x

and (S1.10) is satisfied. These are asymmetric equilibria, and the following result holds:

Result 2. On the boundary where only the B allele is present, there are two asymmetric

equilibria (x̂, ŷ) and
(
x̃, ỹ

)
, corresponding to the fixations of either AB or aB,

x̂ = ŷ = (1, 0, 0, 0), x̃ = ỹ = (0, 0, 1, 0). (S1.19)

Both equilibria are internally unstable.

Proof of Result 2. If an asymmetric equilibrium with z 6= x exists, then from (S1.10),

we have

1 + sz =
1 + s

1 + sx
, (S1.20)

and therefore

z =
s(1− s)
s(1 + sx)

1− z =
s(1 + s)x

s(1 + sx)
. (S1.21)

Substituting these relations into the equilibrium equations resulting from (S1.7), x satisfies

the equation

T (x) = (1−m)s2x(1− x) = 0. (S1.22)

Thus, x = 0 (and z = 1) or x = 1 (and z = 0), giving in the two fixations in either AB

or aB. We check the internal stability of the fixation in AB, for example. “Near” this

6



fixation, w = 1− x and z are small, and up to non-linear terms in w and z, their change

in frequency is

w′ =
1−mB

1 + s
w +mB(1 + s)z

z′ =
mB

1 + s
w + (1−mB)(1 + s)z.

(S1.23)

The characteristic polynomial P (λ) associated with the transformation (S1.23) is

P (λ) = λ2 − (1−mB)

[
(1 + s) +

1

1 + s

]
λ+ (1−mB), (S1.24)

with

P (1) = −s
2(1−mB)

1 + s
< 0, P (+∞) > 0. (S1.25)

Thus, P (λ) has a root larger than 1, and this fixation in AB is internally unstable.

Similarly, the fixation in aB is also internally unstable.

External stability of the symmetric equilibrium

Results 1 and 2 entail that, on the boundary where only the modifier allele B

is present, the unique symmetric equilibrium (x∗,y∗) is the only internally stable equi-

librium. It is therefore interesting to explore when (x∗,y∗) is externally stable to the

introduction of a modifier allele b determining the migration rate mb in the population.

The external local stability of the symmetric equilibrium (x∗,y∗) is determined by

the linear approximation L∗, to the transformation (S1.2) near (x∗,y∗). Up to non-linear

terms, we have (
x′

y′

)
=

(
x∗

y∗

)
+

(
εεε′

δδδ′

)
=

(
x∗

y∗

)
+ L∗

(
εεε
δδδ

)
. (S1.26)

Here εεε = (ε1, ε2, ε3, ε4) and δδδ = (δ1, δ2, δ3, δ4) are such that εi and δi are small in magni-

tude, for i = 1, 2, 3, 4,
∑
i εi =

∑
i δi = 0. Here, εεε′ = (ε1, ε2, ε3, ε4) and δδδ′ = (δ1, δ2, δ3, δ4)

have the same properties as εεε and δδδ, respectively. As x∗i , y
∗
i > 0 for i = 1, 3 and x∗i = y∗i = 0

for i = 2, 4, L∗ has the following block structure
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ε1 ε3 δ1 δ3 ε2 ε4 δ2 δ4

L∗ =



Lin ***

0 Lex



ε1

ε3

δ1

δ3

ε2

ε4

δ2

δ4

(S1.27)

Here 0 is the 4×4 zero matrix and * is a 4×4 matrix that does not affect the eigenvalues

of L∗, which are those of Lin and Lex. Lin determines the internal stability of (x∗,y∗) on

the boundary where only the genotypes AB and aB are present. As (x∗,y∗) is internally

stable, all eigenvalues of Lin are less than 1 in magnitude. Lex corresponds to the linear

approximation of the change in genotype frequencies for the genotypes Ab and ab “near”

(x∗,y∗). Lex thus determines the external stability of (x∗,y∗).

In what follows, we characterize Lex and its largest eigenvalue. The relative relation

of the largest eigenvalue to 1 gives information about the stability of the equilibrium.

A straightforward computation shows that

Lex =


(1−mb)A

∗ (1−mb)B
∗ mbC

∗ mbD
∗

(1−mb)D
∗ (1−mb)C

∗ mbB
∗ mbA

∗

mbA
∗ mbB

∗ (1−mb)C
∗ (1−mb)D

∗

mbD
∗ mbC

∗ (1−mb)B
∗ (1−mb)A

∗

 , (S1.28)

where
(1 + sx∗)A∗ = (1 + s) [1− r (1− x∗)]

(1 + sx∗)B∗ = (1 + s)rx∗

(1 + sx∗)C∗ = 1− rx∗

(1 + sx∗)D∗ = r(1− x∗).

(S1.29)

Since 0 < x∗ < 1 and 0 < r < 1, 0 < mb < 1, Lex is a positive matrix, and by the

Perron-Frobenius theorem, its largest eigenvalue is positive. Let S(λ) = det (Lex − λI),

where I is the 4× 4 identity matrix, be the characteristic polynomial of Lex. Due to the
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structure (S1.28) of Lex (also see Supplementary Material 1 – Appendix A), S(λ)

factors into the product of two quadratic polynomials S1(λ) and S2(λ):

S(λ) = S1(λ) · S2(λ), (S1.30)

where

S1(λ) = λ2 − λ [(1−mb) (A∗ + C∗) +mb (B∗ +D∗)] + (1− 2mb)(A
∗C∗ −B∗D∗)

S2(λ) = λ2 − λ [(1−mb) (A∗ + C∗)−mb (B∗ +D∗)] + (1− 2mb)(A
∗C∗ −B∗D∗).

(S1.31)

The discriminant of S1(λ) = 0 is

[(1−mb)(A
∗ − C∗) +mb(B

∗ −D∗)]2 + 4mb(1−mb)(A
∗D∗ +B∗C∗)

+ 4 (1−mb)
2
B∗D∗ + 4m∗bA

∗C∗,
(S1.32)

which is positive since A∗, B∗, C∗, D∗ are all positive and 0 < mb < 1. In addition,

(1 + sx∗)
2

(A∗C∗ −B∗D∗) = (1 + s)(1− r). (S1.33)

Thus, when 0 < mb <
1
2 and 0 < r < 1, the two roots of S1(λ) = 0 are positive, and they

are both less than one if and only if S1(λ) > 0 and S′1(1) > 0.

It is not obvious that the roots of S2(λ) = 0 are real. However, as the largest

eigenvalue in magnitude of L∗ex is positive, in order for it to be less than 1, it is sufficient

that both positive roots of S2(λ) are less than 1. This is the case if S′1(1) > 0 and

S′2(1) > 0. As 0 < mb < 1 and A∗, B∗, C∗, D∗ are all positive, we have

S2(1) > S1(1), S′2(1) > S′1(1), (S1.34)

so if S1(1) > 0 and S′1(1) > 0, it is also true that S2(1) > 0 and S′2(1) > 0. As (x∗,y∗) is

internally stable, from Result 1 we know that (1 + sx∗)
2
> (1 + s), and so, by (S1.33),

the constant term of both S1(λ) and S2(λ) satisfies

0 < (1− 2mb)(A
∗C∗ −B∗D∗) < 1, (S1.35)

provided 0 < r < 1 and 0 < mb <
1
2 . It is therefore impossible that the two positive

roots of S1(λ) = 0 are both larger than 1. Hence, they are both less than 1 if and only if

S1(1) > 0, in which case also S′1(1) > 0.

9



To sum up, (x∗,y∗) is externally stable if and only if S1(1) > 0. Computing S1(1),

we find that S1(1) > 0 if and only if

(mb −mB (1 + sx∗)
−2

(1− r)s [x∗(s+ 2)− 1] > 0. (S1.36)

As x∗ > 1
s+2 , 0 < r < 1 and s > 0, (S1.36) holds if and only if mb > mB . We have proved

Result 3. The internally unique stable symmetric equilibrium is externally stable towards

the introduction of a modifier allele b provided its associated migration rate mb is larger

than mB .

This result is in complete accordance with the reduction principle of Feldman and

Liberman (1986) for modifiers of migration rates. It implies that the uninvadable stable

migration rate is zero. We now study the case when selection pressures are no longer

constant, but fluctuate in time.

PERIODICALLY FLUCTUATING SELECTION

Suppose now that, within each deme, the selection regime varies temporally. We assume

two possible types of selection regimes. Under T1 and T2. In T1, the fitness coefficients

are assumed to be
Deme Ex Ey

Allele A a A a

Fitness 1 + s 1 1 1 + s, (S1.37)

while in T2 they are
Deme Ex Ey

Allele A a A a

Fitness 1 1 + s 1 + s 1. (S1.38)

For simplicity, we assume that within each deme, phenotype A is favored in one

temporal state and phenotype a is favored in the other. The environments in which allele

A does better are T1 in deme Ex and T2 in deme Ey. The selection regimes fluctuate

between T1 and T2. We first assume periodically fluctuating selection and explore the
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evolution of the migration rate, as a function of the length of the period of the fluctuating

selection, which we also refer to as the environmental period. In the general case, an

environmental cycle consists of τ1 + τ2 selection steps, the first τ1 of type T1 followed

by τ2 of type T2 selection. We are able to derive closed-form solutions and fully explore

the dynamics of the system in the case τ1 = τ2 = 1, i.e. the environment changes

every generation. For analytical tractability, we further need to assume that all selection

coefficients are equal.

Let T be transformation of population state given in (S1.2) with associated fitness

parameters of T1, and let T̃ be the transformation associated with T2 selection. The

transformation of the population state after the (τ1 + τ2) phases of selection is given by(
x′

y′

)
= T̃ ◦ T̃ ◦ · · · ◦ T̃︸ ︷︷ ︸

τ2-times

◦T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸
τ1-times

(
x
y

)
. (S1.39)

We start the analysis with the case τ1 = τ2 = 1, namely(
x′

y′

)
= T̃ ◦ T

(
x
y

)
, (S1.40)

which can be written as a two-phase transformation,(
x′

y′

)
= T̃

(
x̃
ỹ

)
,

(
x̃
ỹ

)
= T

(
x
y

)
. (S1.41)

Boundary equilibria with symmetric selection

Assume that, initially, only B is present at the modifier locus, and let x be the

frequency of AB in deme Ex and z the frequency of aB in deme Ey. Then x = (x, 0, 1−

x, 0), y = (1− z, 0, z, 0), and using (S1.2), we obtain

x̃ = (1−mB)
(1 + s)x

1 + sx
+mB

1− z
1 + sz

z̃ = (1−mB)
(1 + s)z

1 + sz
+mB

1− x
1 + sx

,

(S1.42)

and

x′ = (1−mB)
x̃

1 + s(1− x̃)
+mB

(1 + s)(1− z̃)
1 + s(1− z̃)

z′ = (1−mB)
z̃

1 + s(1− z̃)
+mB

(1 + s)(1− x̃)

1 + s(1− x̃)
.

(S1.43)
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Then,

(z̃ − x̃) =
1 + s

(1 + sx)(1 + sz)
(z − x)

(z′ − x′) =
1 + s

[1 + s(1− x̃)][1 + s(1− z̃)]
(z̃ − x̃).

(S1.44)

Hence,

(z′ − x′) =
(1 + s)

2

(1 + sx)(1 + sz) [1 + s(1− x̃)] [1 + s(1− z̃)]
(z − x). (S1.45)

Thus, at equilibrium, we either have z = x or

(1 + s)
2

(1 + sx)(1 + sz) [1 + s(1− x̃)] [1 + s(1− z̃)]
= 1. (S1.46)

When z = x, we have a symmetric equilibrium characterized by the following result:

Result 4.

1. On the boundary where only the modifier allele B is present, if 0 < mB < 1 and

s > 0, a unique symmetric equilibrium (x̄, ȳ) exists with

x̄ = (x̄, 0, 1− x̄, 0), ȳ = (1− x̄, 0, x̄, 0). (S1.47)

Here, x̄ is the unique positive root of R(x) = 0, where

R(x) = sx2 + [2−mB(s+ 2)]x− (1−mB). (S1.48)

2. When 0 < mB < 1, x̄ > 1
s+2 . If, in addition, 0 < mB < 1

2 , then 0 < x̄ < 1
2 .

3. (x̄, ȳ) is internally stable on this boundary.

Proof of Result 4.

1. At a symmetric equilibrium, z = x and therefore z̃ = x̃. From (S1.42) and (S1.43)

x̃ =
[(1−mB)(s+ 1)−mB ]x+mB

1 + sx
(S49)

x =
[(1−mB)−mB(s+ 1)] x̃+mB(1 + s)

1 + s(1− x̃)
. (S50)

Substituting (S1.49) into (S1.50) gives

(s+ 2)mB

{
sx2 + [2−mB(s+ 2)]x− (1−mB)

}
= 0. (S1.51)
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As mB > 0 and s > 0, x satisfies the quadratic equation R(0) = 0. As R(±∞) > 0,

R(x) = 0 has two real roots, one positive and one negative. But, as 0 < mB < 1,

R(1) = (s+ 1)(1−mB) > 0, (S1.52)

and thus R(x) = 0 has a unique root x̄ with 0 < x̄ < 1.

2. Observe that

R

(
1

s+ 2

)
= −s(s+ 1)

(s+ 2)
2 , R

(
1

2

)
=
s

4
(1− 2mB). (S1.53)

As R(0) < 0 when 0 < mB < 1 and R(1) > 0, when 0 < mB < 1, we have x̄ > 1
s+2 .

If, in addition, 0 < mB < 1
2 , we have 0 < x̄ < 1

2 .

3. In view of (S1.45), the symmetric equilibrium (x̄, ȳ) is internally stable provided

(1 + s)
2

(1 + sx̄)
2

[1 + s (1− x̃)]
2 < 1. (S1.54)

Using (S1.49),

(1 + sx̄)[1 + s(1− x̃)] = (1 + s) + smB [(s+ 2)x̄− 1]. (S1.55)

When 0 < mB < 1, x̄ > 1
s+2 and therefore (1 + sx̄)[1 + s(1 − x̃)] > 1 + s, and thus

(S1.54) is satisfied.

As in the constant environment case, it is possible that asymmetric equilibria exist

with z 6= x and (S1.46) is satisfied. For example, the two fixations in AB or in aB, in

both demes, are such equilibria. They correspond to x = 1, z = 0 or x = 0, z = 1,

respectively. We can show that both fixations are internally unstable. Our computer

simulations suggest that there are no stable asymmetric equilibria.

External stability of the symmetric equilibrium

We next check the external stability of the internally stable symmetric equilibrium

(x̄, ȳ) to the introduction of b at the modifier locus, changing the migration rate from mB

to mb. As the transformation of the population state is T̃ ◦ T, following the same type
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of analysis as in the constant environment case, the matrix Lex determining the external

stability of (x̄, ȳ) is given by

Lex = L̃ex ◦ Lex, (S1.56)

where, as in (S1.28),

Lex =


(1−mb)A (1−mb)B mbC mbD

(1−mb)D (1−mb)C mbB mbA

mbA mbB (1−mb)C (1−mb)D

mbD mbC (1−mb)B (1−mb)A

 , (S1.57)

L̃ex =


(1−mb)Ã (1−mb)B̃ mbC̃ mbD̃

(1−mb)D̃ (1−mb)C̃ mbB̃ mbÃ

mbÃ mbB̃ (1−mb)C̃ (1−mb)D̃

mbD̃ mbC̃ (1−mb)B̃ (1−mb)Ã

 . (S1.58)

As in (S1.29) we have
(1 + sx̄)A = (1 + s) [1− r (1− x̄)]

(1 + sx̄)B = (1 + s)rx̄

(1 + sx̄)C = 1− rx̄

(1 + sx̄)D = r(1− x̄),

(S1.59)

(1 + sx̃)Ã = (1 + s) [1− r (1− x̃)]

(1 + sx̃)B̃ = (1 + s)rx̃

(1 + sx̃)C̃ = 1− rx̃

(1 + sx̃)D̃ = r(1− x̃).

(S1.60)

The relation between the equilibrium point (x̄, ȳ) and (x̃, ỹ) is such that

(x̄, ȳ)
T−→ (x̃, ỹ)

T̃−→ (x̄, ȳ) . (S1.61)

We can write

Lex =


a e h d

b f g c

c g f b

d h e a

 , (S1.62)
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where
a = (1−mb)

2
ÃA+ (1−mb)

2
B̃D +m2

bC̃A+m2
bD̃D

b = (1−mb)
2
D̃A+ (1−mb)

2
C̃D +m2

bB̃A+m2
bÃD

c = mb(1−mb)
[
ÃA+ B̃D + C̃A+ D̃D

]
d = mb(1−mb)

[
D̃A+ C̃D + B̃A+ ÃD

]
e = (1−mb)

2
ÃB + (1−mb)

2
B̃C +m2

bC̃B +m2
bD̃C

f = (1−mb)
2
D̃B + (1−mb)

2
C̃C +m2

bB̃B +m2
bÃC

g = mb(1−mb)
[
ÃB + B̃C + C̃B + D̃C

]
h = mb(1−mb)

[
D̃B + C̃C + B̃B + ÃC

]
.

. (S1.63)

From (S1.57) and (S1.58), the characteristic polynomial D(λ) = det (Lex − λI) of Lex,

factors into the product of two quadratic polynomials: D(λ) = D1(λ)D2(λ). In fact,

D(λ) =


a+ d− λ e+ h 0 0

b+ c f + g − λ 0 0

e g f − g − λ b− c

d h e− h a− d− λ

 , (S1.64)

with

D1(λ) = λ2 − (a+ d+ f + g)λ+ (a+ d)(f + g)− (b+ c)(e+ h)

D2(λ) = λ2 − (a− d+ f − g)λ+ (a− d)(f − g)− (b− c)(e− h).
(S1.65)

Based on Supplementary 1 – Appendix A, the constant terms of D1(λ) and D2(λ)

are both equal to

(1− 2mb)
2

(1 + sx̄)
−2

[1 + s (1− x̃)]
2

(1 + s)
2

(1− r)2
. (S1.66)

These constant terms are positive for 0 < r < 1 and 0 < mb <
1
2 and are less than 1 due

to the internal stability of (x̄, ȳ). Observe that the discriminant of D1(λ) = 0 is

(a+ d+ f + g)
2 − 4(1a+ d)(f + g)− (b+ c)(e+ h)] (S67)

which reduces to

[(a+ d)− (f + g)]
2

+ 4(b+ c)(e+ h) > 0, (S68)
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since a, b, c, d, e, f, g, h are all positive. Therefore D1(λ) = 0 has two positive roots whose

product is less than 1. These positive roots are less than 1 provided both D1(1) and D′1(1)

are positive. As it is impossible that both roots are larger than 1 (their product is less

than 1), we only need the condition D1(1) > 0. Since the matrix Lex is positive, we know

that its largest eigenvalue is positive. For the external stability of (x̄, ȳ), we also need to

prove that when the roots of D2(λ) = 0 are real and positive (their product is positive)

they are both less than 1. This is the case when D2(1) > 0 and D′2(1) > 0. It is clear that

D2(1) > D1(1), D′2(1) > D′1(1). (S1.69)

Therefore, when D1(1) > 0 and D′1(1) > 0, this also implies D2(1) > 0 and D′2(1) > 0.

To sum up, (x̄, ȳ) is externally stable provided D1(1) > 0 where

D1(1) = 1− (a+ d+ f + g) + (a+ d)(f + g)− (b+ c)(e+ h), (S1.70)

and (a+ d)(f + g)− (b+ c)(e+ h) is given in (S1.66).

Let us compute (a+ d+ f + g). Following (S1.63),

(a+ d+ f + g) =
[
(1−mb)

2
Ã+m2

bC̃ +mb(1−mb)
(
B̃ + D̃

)]
A

+
[
(1−mb)

2
C̃ +m2

bÃ+mb(1−mb)
(
B̃ + D̃

)]
C

+
[
(1−mb)

2
B̃ +m2

bD̃ +mb(1−mb)
(
Ã+ C̃

)]
D

+
[
(1−mb)

2
D̃ +m2

bB̃ +mb(1−mb)
(
Ã+ C̃

)]
B

(S1.71)

which can be rewritten as

(a+ d+ f + g) = (1−mb)
2
[
ÃA+ B̃D + C̃C + D̃B

]
+mb(1−mb)

[(
B̃ + D̃

)(
A+ C

)
+
(
Ã+ C̃

) (
B +D

)]
+m2

b

[
ÃC + B̃B + C̃A+ D̃D

]
.

(S1.72)

Thus,

(a+ d+ f + g) = (1− 2mb)
[
ÃA+ B̃D + C̃C + D̃B

]
+mb

[(
B̃ + D̃

)(
A+ C

)
+
(
Ã+ C̃

)(
B +D

)]
+m2

b

(
Ã+ C̃ − B̃ − D̃

)(
A+ C +B −D

)
.

(S1.73)
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By (S1.59) and (S1.60),

(1 + sx̄)
[
1 + s(1− x̃)

][
ÃA+ B̃D + C̃C + D̃B

]
=

= (1 + s)
[
2(1− r) + r2

]
+ r2s(s+ 1)x̄− r2sx̃− r2s2x̄x̃,

(S1.74)

(1 + sx̄)
[
1+s(1− x̃)

] [(
B̃ + D̃

)(
A+ C

)
+
(
Ã+ C̃

)(
B + C

)]
=

= 2r2(1 + sx̄)
[
1 + s(1− x̃)

]
+ r(1− r)(s+ 2)

[
(s+ 2) + s(x̄+ x̃)

]
,

(S1.75)

(1 + sx̄)
[
1 + s(1− x̃)

][
Ã+ C̃ − B̃ − D̃

][
A+ C −B −D

]
=

= (s+ 2)2(1− r)2.
(S1.76)

Using (S1.66), D1(1) is equal to

1− (1− 2mb)
(1 + s)

[
2(1− r) + r2

]
+ r2s(s+ 1)x̄− r2sx̃− r2s2x̄x̃

(1 + sx̄)[1 + s(1− x̃)]

−mb
2r2(1 + sx̄)[1 + s(1− x̃)] + r(1− r)(s+ 2)[(s+ 2) + s(x̄− x̃)]

(1 + sx̄)[1 + s(1− x̃)]

−m2
b

(s+ 2)
2

(1− r)2

(1 + sx̄)[1 + s(1− x̃)]

+
(1− 2mb)

2
(s+ 1)

2
(1− r)2

(1 + sx̄)
2

[1 + s (1− x̃)]
2 .

(S1.77)

We next show that D1(1) can be represented as

D1(1) = (1− r)s(mB −mb)∆(r), (S1.78)

where ∆(r) is a linear function of r that is positive for all 0 ≤ r ≤ 1. Therefore the sign

of D1(1) coincides with that of (mB −mb), and D1(1) > 0 when mB > mb. We thus have

the following result:

Result 5. The unique internally stable symmetric equilibrium (x̄, ȳ) is externally stable

to the introduction of the allele b at the modifier locus provided mB > mb. Thus, higher

migration rates are favored and the stable uninvadable migration rate is 1.

Computation of D1(1).

Observe that

r2[(1 + s) + s(s+ 1)x̄− sx̃− s2x̄x̃] = r2(1 + sx̄)[1 + s(1− x̃)], (S1.79)
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so (S1.77) simplifies to

1− r2 − (1− 2mb)
2(1 + s)(1− r)

(1 + sx̄)[1 + s(1− x̃)]
−mb

r(1− r)(s+ 2)[(s+ 2) + s(x̄− x̃)]

(1 + sx̄)[1 + s(1− x̃)]

−m2
b

(s+ 2)
2

(1− r)2

(1 + sx̄)[1 + s(1− x̃)]
+

(1− 2mb)
2

(s+ 1)
2

(1− r)2

(1 + sx̄)
2

[1 + s (1− x̃)]
2 .

(S1.80)

Clearly D1(1) of (S1.80) has a factor of (1− r), and in fact

D1(1) = (1− r)f(r), (S1.81)

where f(r) is a linear function of r, for 0 ≤ r ≤ 1. Now

f(1) = 2− (1− 2mb)
2(1 + s)

(1 + sx̄)[1 + s(1− x )]
−mb

(s+ 2)[(s+ 2) + s(x̄− x̃)]

(1 + sx̄)[1 + s(1− x̃)]
. (S1.82)

Following (S1.55) we have

(1 + sx̄)[1 + s(1− x̃)] = (1 + s) + smB [(s+ 2)x̄− 1]. (S1.83)

We also have an equivalent expression for (S1.83) in terms of x̃, namely

(1 + sx̄)[1 + s(1− x̃)] = (1 + s) + smB [(s+ 1)− (s+ 2)x̃]. (S1.84)

Also, whereas x̄ > 1
s+2 , we have x̃ < s+1

s+2 . Applying all of this to (S1.82) and using the

fact that

(1 + sx̄)[1 + s(1− x̃)] = (1 + s) +
1

2
smB [s+ (s+ 2)(x̄− x̃)], (S1.85)

we get that

(1 + sx̄)[1 + s(1− x̃)]f(1) = 2(s+ 1) + smB [s+ (s+ 2)(x̄− x̃)]

− 2(1− 2mb)(s+ 1)−mb(s+ 2)[(s+ 2) + s(x̄− x̃)]

= s2mB −mb

[
(s+ 2)

2 − 4(s+ 1)
]

+ s(s+ 2)(mB −mb)(x̄− x̃)

= s2(mB −mb) + s(s+ 2)(mB −mb)(x̄− x̃).
(S1.86)

Thus

(1 + sx̄)[1 + s(1− x̃)]f(1) = s(mB −mb)[s+ (s+ 2)(x̄− x̃)]. (S1.87)
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But as (s+ 2)x̄ > 1, (s+ 2)x̃ < (s+ 1),

s+ (s+ 2)(x̄− x̃) = [(s+ 2)x̄− 1] + [(s+ 1)− (s+ 2)x̃] > 0. (S1.88)

It follows that the sign of f(1) is the same as the sign of (mB −mb).

We now compute f(0):

f(0) = 1− (1− 2mb)
2(1 + s)

(1 + sx̄)[1 + s(1− x̃)]
−m2

b

(s+ 2)
2

(1 + sx̄)[1 + s(1− x̃)]

+
(1− 2mb)

2
(s+ 1)

2

(1 + sx̄)
2

[1 + s(1− x̃)]
2 .

(S1.89)

Using the expression (S1.83) for the product of the two mean fitnesses, we get

(1 + sx̄)
2

[1 + s (1− x̃)]
2
f(0) = {(1 + s) + smB [(s+ 2)x̄− 1]}2

− 2(1− 2mb)(s+ 1) {(1 + s) + smB [(s+ 2)x̄− 1]}

−m2
b(s+ 2) {(1 + s) + smB [(s+ 2)x̄− 1]}

+ (1− 2mb)
2

(s+ 1)
2
.

(S1.90)

In (S1.90) we replace the x̄2 term using the equilibrium equation (S1.48) to give

(1 + sx̄)
2

[1 + s(1− x̃)]
2
f(0) = (mB −mb)s

{
mbs(s+ 1)

−m2
B (s+ 2)

2
+mB

[
(s+ 1)(s+ 4)−mb (s+ 2)

2
]

+mB(s+ 2)x̄
[
mB (s+ 2)

2
+mb (s+ 2)

2 − 4(s+ 1)
]}
.

(S1.91)

The right-hand side of (S1.91) is (mB −mb)s multiplied by

mbs(s+1)+mB (s+ 2)
2

(mB +mb)[x̄(s+2)−1]+mB(s+1)[(s+4)−4x̄(s+2)]. (S1.92)

We will show that (S1.92) is always positive. In fact, (S1.92) is equal to

mbs(s+ 1) +mB ·mb (s+ 2)
2 [
x̄(s+ 2)− 1

]
+m2

B (s+ 2)
2 [
x̄(s+ 2)− 1

]
+mB(s+ 1)

[
(s+ 4)− 4x̄(s+ 2)

]
.

(S1.93)

From the equilibrium equation (S1.48) we get that

mB

[
(s+ 2)x̄− 1

]
= sx̄2 + 2x̄− 1. (S1.94)
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Hence (S1.93) is equal to

mbs(s+ 1) +mB ·mb (s+ 2)
2 [
x̄(s+ 2)− 1

]
+

+mB (s+ 2)
2 [
sx̄2 + 2x̄− 1

]
+mB(s+ 1)

[
(s+ 4)− 4x̄(s+ 2)

]
.

(S1.95)

The last two terms have a factor mB that multiplies

(s+ 1)(s+ 4)− (s+ 2)
2

+ (s+ 2)
2
x̄(2 + sx̄)− 4x̄(s+ 1)(s+ 2) =

= s+ (s+ 2)x̄
[
(s+ 2)(2 + sx̄)− 4(s+ 1)

]
= s+ (s+ 2)x̄

[
(s+ 2)sx̄− 2s

]
= s

[
(s+ 2)

2
x̄2 − 2(s+ 2)x̄+ 1

]
= s
[
(s+ 2)x̄− 1

]2
,

(S1.96)

which is positive. To sum up, f(0) also has the same sign of (mB −mb), and so

D1(1) = (1− r)s(mB −mb)∆(r), (S1.97)

where ∆(r) is a linear function of r that is positive for all 0 ≤ r ≤ 1.

We saw that in a temporally constant environment the reduction principle holds and

smaller migration rates are always favored. On the other hand, with fluctuating selection of

period 2, non-zero migration rates evolve and the reverse of the reduction principle holds:

a higher migration rate can always invade in a population fixed on a smaller resident

one and the evolutionarily stable migration rate is 1. An important result is that this

evolutionarily stable switching rate maximizes mean fitness at equilibrium. This result

is deeply rooted in classic population genetics theory and is connected to early work on

neutral modifiers and the mean fitness principle of Karlin and McGregor (1972, 1974).

The mean fitness and external stability.

We saw that in a constant environment the symmetric equilibrium is externally stable

if mb > mB and unstable if mb < mB , so that smaller migration rates are favored. On

the other hand, with fluctuating selection of period 2, non-zero migration rates evolve; the

symmetric equilibrium is stable if mB > mb and unstable if mB < mb. This phenomenon

is related to the behavior of the mean fitness at equilibrium in the following way.
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Result 6. The mean fitness at the symmetric equilibrium is

i. a decreasing function of mB in a constant environment,

ii. an increasing function of mB in a period 2 cycling environment.

Proof of Result 6.

i. In a constant environment, the mean fitness w∗ at the symmetric equilibrium (x̄∗, ȳ∗)

is w∗ = 1 + sx∗, and it is a decreasing function of mB if ∂x∗

∂mB
is negative. Using the

equilibrium equation,

∂x∗

∂mB
=

1− (s+ 2)x∗

2sx∗ +
[
(s+ 2)mB − s

] . (S1.98)

As x∗ > 1
s+2 , in order for ∂x∗

∂mB
to be negative, it is sufficient that

x∗ >
s−mB(s+ 2)

2s
. (S1.99)

This follows easily from the fact that Q(x) in (S1.13) satisfies Q(0) < 0, Q(x∗) = 0,

and Q
(
s−mB(s+2)

2s

)
< 0.

ii. With a fitness cycle of period 2, the mean fitness w̄ at the symmetric equilibrium

(x̄, ȳ) is

w̄ = (1 + s) + smB

[
(s+ 2)x̄− 1

]
. (S1.100)

w̄ is an increasing function of mB if ∂w̄
∂µB

> 0. Now

∂w̄

∂mB
= s
[
(s+ 2)x̄− 1

]
+ s(s+ 2)mB

∂x̄

∂mB
. (S1.101)

Thus ∂w̄
∂mB

> 0 provided ∂x̄
∂mB

> 0. Using the equilibrium equation R(x) = 0 for x̄,

we have
∂x̄

∂mB
=

x̄(s+ 1)− 1

2sx̄+
[
2−mB(s+ 2)

] . (S1.102)

Since
[
x̄(s+ 1)− 1

]
> 0, we conclude that ∂x̄

∂mB
> 0 if

x̄ >
mB(s+ 2)− 2

2s
, (S1.103)

which follows from R(0) < 0, R(x̄) = 0, and R
(
mB(s+2)−2

2s

)
< 0.
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SUPPLEMENTARY MATERIAL 1 – APPENDIX A

The family of the 4× 4 matrices of the form

L =


(1−m)A (1−m)B mC mD

(1−m)D (1−m)C mB mA

mA mB (1−m)C (1−m)D

mD mC (1−m)B (1−m)A

 , (S1.A1)

has the following properties:

1. If P is the 4× 4 matrix 
1 0 0 1

0 1 1 0

0 0 1 0

0 0 0 1

 , (S1.A2)

then

PLP−1 =

(
M 0

* N

)
, (S1.A3)

where 0 is the 2× 2 zero matrix and

M =

(
(1−m)A+mD (1−m)B +mC

mA+ (1−m)D mB + (1−m)C

)

N =

(
(1−m)C −mB (1−m)D −mA

(1−m)B −mC (1−m)A−mD

)
.

(S1.A4)

Hence L is similar, via P, to the block matrix (S1.A3).

2. The determinants of M and N are equal:

det(M) = det(N) = (1− 2m)(AC −BD). (S1.A5)

3. The characteristic polynomial of L factors into the product of the characteristic poly-

nomials of M and N, namely

det (L− I4) = det(M− λI2) · det(N− λI2), (S1.A6)

where Ii is the identity matrix of order i for i = 2, 4.
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4. If L1,L2, . . . ,Ln are matrices of the form (S1.A1) with corresponding matrices Mi

and Ni as in (S1.A3), for i = 1, 2, . . . , n, then

P

(
n∏
i=1

Li

)
P−1 =

(∏n
i=1 Mi 0

*
∏n
i=1 Ni

)
. (S1.A7)

Therefore
∏n
i=1 Li is similar, via P, to the block matrix (S1.A7).

5. The characteristic polynomial of
∏n
i=1 Li factors into the characteristic polynomials

of
∏n
i=1 Mi and

∏n
i=1 Ni.

6. The matrix
∏n
i=1 Li also has the form

a e h d

b f g c

c g f b

d h e a

 , (S1.A8)

and the corresponding matrices
∏n
i=1 Mi and

∏n
i=1 Ni have the form(

a+ d e+ h

b+ c f + g

)
and

(
f − g b− c

e− h a− d

)
, (S1.A9)

respectively.

7. If D(λ), D1(λ), and D2(λ) are the characteristic polynomials of
∏n
i=1 Li,

∏n
i=1 Mi,

and
∏n
i=1 Ni, respectively, then

D(λ) = D1(λ) ·D2(λ), (S1.A10)

where

D1(λ) = λ2 − (a+ d+ f + g)λ+ (a+ d)(f + g)− (b+ c)(e+ h)

D2(λ) = λ2 − (a− d+ f − g)λ+ (a− d)(f − g)− (b− c)(e− h).
(S1.A11)

Moreover, the two constant terms of D1(λ) and D2(λ) are both equal

(a+ d)(f + g)− (b+ c)(e+ h) = (a− d)(f − g)− (b− c)(e− h), (S1.A12)

and (S1.A12) is equal to

n∏
i=1

det(Mi) =

n∏
i=1

det(Ni) ≡ (1− 2m)n
n∏
i=1

(AiCi −BiDi), (S1.A13)

where Ai, Bi, Ci, Di, are the parameters associated with Li, for i = 1, 2, . . . , n, as in

(S1.A1).
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SUPPLEMENTARY MATERIAL 2

ON THE EVOLUTION OF RECOMBINATION IN CHANGING ENVIRONMENTS

Oana Carja, Uri Liberman, and Marcus W. Feldman

Consider an infinite sexual haploid population in which each individual is defined

by three biallelic loci. The two major loci A/a and B/b control the phenotype and thus

the fitness of the individual. The third locus M/m is a modifier locus that controls the

recombination rate between the two major loci. This modifier locus is otherwise selectively

neutral.

We study the evolution of the modifier locus M/m and determine the evolutionarily

stable recombination rate as a function of the pattern of fluctuation in selection experi-

enced by the population. As in general analyses of neutral modifiers (see Feldman and

Liberman 1986), we frame the question in terms of the stability of the fixation equilibrium

with only M present in the population, to invasion by an allele m, introduced in the pop-

ulation by a rare mutation. To that end, we track the frequencies of the eight genotypes

MAB, MAb, MaB, Mab, mAB, mAb, maB, mab. At each generation, the population

experiences random mating, recombination, and selection.

As the modifier locus is assumed to be selectively neutral, there are four fitness

parameters determined by the two major loci

major loci genotype AB Ab aB ab

fitness w1 w2 w3 w4.
(S2.1)

There are three possible recombination rates depending on the mating type at the

modifier locus
modifier locus genotype MM Mm mm

recombination rate r1 r2 r3.
(S2.2)

Suppose that the three loci are ordered with the modifier locus located on one side of

the two major loci. Let R be the recombination rate between the modifier locus and the

two major loci, and we assume no interference between recombination events occurring in

the two intervals separating the two major loci and between the modifier locus and the

nearest major locus.
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Let x = (x1, x2, . . . , x8) be the frequency vector of the eight genotypes in the present

generation, and let x′ = (x′1, x
′
2, . . . , x

′
8) be the frequency vector of the next generation.

The change in genotype frequencies from one generation to the next is given by

wx′1 = w1

[
x1 +R(x2x5 + x3x5 + x4x5 − x1x7 − x1x8 − x1x6)

+ r1(x2x3 − x1x4)

+ r2(x2x5 + x2x7 − x1x8 − x1x6)

+Rr2(2x1x6 − 2x2x5 + x3x6 + x1x8 − x4x5 − x2x7)
]

wx′2 = w2

[
x2 +R(x1x6 + x3x6 + x4x6 − x2x5 − x2x7 − x2x8)

+ r1(x1x4 − x2x3)

+ r2(x1x6 + x1x8 − x2x5 − x2x7)

+Rr2(2x2x5 − 2x1x6 + x2x7 + x4x5 − x1x8 − x3x6)
]

wx′3 = w3

[
x3 +R(x1x7 + x2x7 + x4x7 − x3x6 − x3x8 − x3x5)

+ r1(x1x4 − x2x3)

+ r2(x4x7 + x4x5 − x3x8 − x3x6)

+Rr2(x1x8 + x3x6 + 2x3x8 + x4x5 − x2x7 − 2x4x7)
]

wx′4 = w4

[
x4 +R(x1x8 + x2x8 + x3x8 − x4x5 − x4x6 − x4x7)

+ r1(x2x3 − x1x4)

+ r2(x3x6 + x3x8 − x4x5 − x4x7)

+Rr2(x2x7 + x4x5 − 2x3x8 − x1x8 − x3x6 + 2x4x7)
]

wx′5 = w1

[
x5 +R(x1x6 + x1x7 + x1x8 − x2x5 − x3x5 − x4x5)

+ r2(x1x6 + x3x6 − x2x5 − x4x5)

+ r3(x6x7 − x5x8)

+Rr2(2x2x5 − 2x1x6 + x2x7 + x4x5 − x1x8 − x3x6)
]
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wx′6 = w2

[
x6 +R(x2x5 + x2x7 + x2x8 − x1x6 − x3x6 − x4x6)

+ r2(x2x5 + x4x5 − x1x6 − x3x6)

+ r3(x5x8 − x6x7)

+Rr2(2x1x6 − 2x2x5 + x1x8 + x3x6 − x2x7 − x4x5)
]

wx′7 = w3

[
x7 +R(x3x5 + x3x6 + x3x8 − x1x7 − x2x7 − x4x7)

+ r2(x1x8 + x3x8 − x2x7 − x4x7)

+ r3(x5x8 − x6x7)

+Rr2(2x4x7 − 2x3x8 + x4x5 + x2x7 − x1x8 − x3x6)
]

wx′8 = w4

[
x8 +R(x4x5 + x4x6 + x4x7 − x1x8 − x2x8 − x3x8)

+ r2(x2x7 + x4x7 − x1x8 − x3x8)

+ r3(x6x7 − x5x8)

+Rr2(x1x8 + x3x6 − x2x7 − x4x5 + 2x3x8 − 2x4x7)
]
.

(S2.3)

Here w is a normalizing factor such that
∑8
i=1 x

′
i = 1.

We first present the case when selection is constant in time in both demes; this will

serve as our reference model. We then consider regimes in which there is fluctuating

selection through time. In particular, we ask how the rate of environmental volatility

affects the stable recombination rate.
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CONSTANT SELECTION

We are able to derive closed-form mathematical results if we assume the following

symmetry relations among the fitness parameters:

w1 = w4, w2 = w3. (S2.4)

Also, without loss of generality, we will assume that w1 > w2; that is

w1 = w4 = 1 + s, w2 = w3 = 1 (S2.5)

with s > 0.

Equilibria with symmetric selection

Suppose that initially only allele M is present at the modifier locus. In this case the

transformation (S2.3) reduces to

wx′1 = w1(x1 − r1D)

wx′2 = w2(x2 + r1D)

wx′3 = w3(x3 + r1D)

wx′4 = w4(x4 − r1D),

(S2.6)

as xi = x′i = 0 for i = 5, 6, 7, 8. Here

D = x1x4 − x2x3

w =
n∑
i=1

wixi − r1D(w1 − w2 − w3 + w4).
(S2.7)

We now look for equilibria of (S2.6) and check their internal stability. We have the

following result:

Result 1. On the boundary where only the M modifier allele is present, the possible

equilibria are the four fixations and a symmetric equilibrium x∗ =
(
x∗, 1

2 − x
∗, 1

2 − x
∗, x∗

)
.

The fixations in AB and in ab are internally stable, whereas the other equilibria are

unstable.

Proof of Result 1.
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As w1 = w4 and w2 = w3, from (S2.6), at equilibrium

w(x1 − x4) = w1(x1 − x4), w(x2 − x3) = w2(x2 − x3). (S2.8)

Hence, x1 = x4 or w = w1, and x2 = x3 or w = w2. If w = w1, then, from (S2.6) again,

x1 = x1 − r1D, and as 0 < r1 < 1, D = 0. Similarly, if w = w2, then also D = 0. If

x1 6= x4 and w = w1, then x2 = x3 as otherwise w = w2, which is impossible. As in this

case D = 0, we have

w = w1 = w1(x1 + x4) + w2(x2 + x3), (S2.9)

and as w1 > w2, (S2.9) implies that x2 = x3 = 0 and x1+x4 = 1. Since D = x1x4−x2x3 =

0, we then have x1 = 1, x4 = 0 or x1 = 0, x4 = 1. Therefore, the possible equilibria when

either x1 6= x4 or x2 6= x3 are the four fixations (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)

in AB, Ab, aB, ab, respectively. In addition, if x1 = x4, x2 = x3, there can be an

equilibrium
(
x, 1

2 − x,
1
2 − x, x

)
which satisfies

wx = w1(x− r1D)

D = x2 −
(

1

2
− x
)2

= x− 1

4

w = 2(w1 − w2)(1− r1)x+
r1

2
w1 +

(
1− r1

2
w2

)
.

(S2.10)

Thus

x =
w1x(1− r1) + r1

4 w1

2(w1 − w2)(1− r1)x+ r1
2 w1 +

(
1− r1

2

)
w2

. (S2.11)

Therefore Q(x) = 0 where

Q(x) = 2(w1 − w2)(1− r1)x2 +
[r1

2
w1 +

(
1− r1

2

)
w2 − w1(1− r1)

]
x− r1

4
w1. (S2.12)

Now Q(0) = − r14 w1 < 0 and Q
(

1
2

)
= r1

4 w2 > 0. Hence, Q(x) = 0 has a unique root x∗

satisfying 0 < x∗ < 1
2 determining an equilibrium x∗ =

(
x∗, 1

2 − x
∗, 1

2 − x
∗, x∗

)
.

We next check the internal stability of these five possible equilibria. The fixation in

AB is internally stable, as its local stability matrix is
1

1+s 0 r1
1+s

0 1
1+s

r1
1+s

0 0 1− r1

 , (S2.13)
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with all of its eigenvalues positive and less than 1. Similarly the fixation of ab is stable.

The local stability matrix associated with the fixation of Ab is 1 + s r1(1 + s) 0

0 1− r1 0

0 r1(1 + s) 1 + s

 , (S2.14)

which has two eigenvalues larger than 1. Similarly, the fixation in aB is also internally

unstable.

We next check the stability of x∗. At x∗ we have x1 = x4, x2 = x3. Then “near” x∗,

up to non-linear terms,

x′1 − x′4 =
w1

w∗
(x1 − x4), x′2 − x′3 =

w2

w∗
(x2 − x3). (S2.15)

Hence x∗ is internally stable provided w∗ > w1, w2. As w1 > w2 and

w∗ = 2(w1 − w2)(1− r1)x∗ +
r

2
w1 +

(
1− r

2

)
w2, (S2.16)

w∗ > w2. w∗ > w1 if and only if

2(w1 − w2)(1− r)x∗ >
(

1− r

2

)
(w1 − w2), (S2.17)

or, as (w1 − w2) > 0, if and only if

2(1− r1)x∗ > 1− r1

2
, (S2.18)

which is impossible when 0 < r1 < 1 and 0 < x∗ < 1
2 . Therefore x∗ is not internally

stable.

When the environment is constant, the only possible stable equilibria withM fixed are

the two fixations in AB and ab. These fixations do not depend on r1, the recombination

rate determined by M We now study the case when selection pressures are no longer

constant, but fluctuate in time.
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PERIODICALLY FLUCTUATING SELECTION

Suppose now that the environment varies temporally. We assume two possible types of

selection regimes such that the fitness parameters change as follows:

phenotype AB Ab aB ab

environment 1 w1 w2 w3 w4

environment 2 w̃1 w̃2 w̃3 w̃4,

(S2.19)

where we can write

w1 = w4 = 1 + s w2 = w3 = 1

w̃1 = w̃4 = 1 w̃2 = w̃3 = 1 + s.
(S2.20)

Equilibria with symmetric selection

We start with only the modifier allele M present in the population so that xi = x′i = 0

for i = 5, 6, 7, 8. Let the two-phase transformation of the frequencies, determined by (S2.3),

be x′ = T̃ ·Tx. This can be represented in two stages as

x′ = T̃x̃, x̃ = Tx, (S2.21)

where xi = x̃i = x′i = 0 for i = 5, 6, 7, 8 and

wx̃i = wi
(
xi ∓ r1D

)
w̃x′i = w̃i

(
x̃i ∓ r1D̃

) i = 1, 2, 3, 4. (S2.22)

Here

w =

4∑
i=1

wixi − r1D(w1 − w2 − w3 + w4)

w̃ =

4∑
i=1

w̃ix̃i − r1D̃
(
w̃1 − w̃2 − w̃3 + w̃4

)
D = x1x4 − x2x3

D̃ = x̃1x̃4 − x̃2x̃3.

(S2.23)

As w1 = w4, w2 = w3, and w̃1 = w̃4, w̃2 = w̃3, we have

x′1 − x′4 =
w1w̃1

ww̃
(x1 − x4)

x′2 − x′3 =
w2w̃2

ww̃
(x2 − x3).

(S2.24)
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At equilibrium when x′ = x, equations (S2.24) are satisfied by x1 = x4, x2 = x3, to-

gether with x̃1 = x̃4, x̃2 = x̃3. Hence, we look for symmetric equilibria of the form

(x1, x2, x3, x4) =
(
x, 1

2 − x,
1
2 − x, x

)
. We obtain the following result:

Result 2. On the boundary where only allele M is present, a unique symmetric equilib-

rium x∗ exists where x∗ =
(
x∗, 1

2 − x
∗, 1

2 − x
∗, x∗

)
and x∗ is the unique positive root of

Q(x) = 0, where 0 < x∗ < 1
2 and

Q(x) = Ax2 +Bx+ C,

A = r1(1− r1)(w1 + w2)(w1 − w2)

B =
1

2
r1(1− r1)(w1 + w2)(w1 − w2) +

1

2
r1

(
1− r1

2

)
(w1 + w2)

2

C = −1

4
r1

(
1− r1

2

)
w2(w1 + w2).

(S2.25)

Proof of Result 2.

If x =
(
x, 1

2 − x,
1
2 − x, x

)
, then x̃ =

(
x̃, 1

2 − x̃,
1
2 − x̃, x̃

)
and

D = x2 −
(

1

2
− x
)2

= x− 1

4
, D̃ = x̃2 −

(
1

2
− x̃
)2

= x̃− 1

4

w = 2(w1 − w2)(1− r1)x+
r1

2
w1 +

(
1− r1

2

)
w2

w̃ = 2(w2 − w1)(1− r1)x̃+
r1

2
w2 +

(
1− r1

2

)
w1,

(S2.26)

since w̃1 = w2, w̃2 = w1. From (S2.22) we have

wx̃ = w1(x− r1D) = w1(1− r1)x+
r1

4
w1

w̃x = w̃1

(
x− r1D̃

)
= w2(1− r1)x̃+

r1

4
w2.

(S2.27)

Hence

x̃ =
w1(1− r1)x+ r1

4 w1

2(w1 − w2)(1− r1)x+ r1
2 w1 +

(
1− r1

2

)
w2

x =
w2(1− r1)x̃+ r2

4 w2

2(w2 − w1)(1− r1)x̃+ r1
2 w2 +

(
1− r1

2

)
w1

.

(S2.28)

In (S2.28), substituting x̃ in the expression for x, gives the quadratic equation Q(x) = 0

given in (S2.25). Now as 0 < r1 < 1,

Q(0) = −1

4
r1

(
1− r1

2

)
w2(w1 + w2) > 0 (S2.29)
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and

Q
(

1
2

)
=

1

2
r1

(
1− r1

2

)
w1(w1 + w2) > 0. (S2.30)

Therefore Q(x) = 0 has a solution 0 < x∗ < 1
2 . It is the unique positive solution of

Q(x) = 0 as Q (±∞) > 0 when w1 > w2 and r > 0 so the other root of Q(x) = 0 is

negative.

We next check the internal stability of x∗.

Result 3. The unique symmetric equilibrium x∗ is internally stable on the boundary

where only the M modifier allele is present.

Proof of Result 3.

As x1 = x4 and x2 = x3 in x∗, and in view of (S2.24), x∗ is internally stable if

ww̃ > w1w̃1 and ww̃ = w2w̃2, namely if ww̃ > w1w2. But

w = 2(w1 − w2)(1− r1)x+ w2 +
r1

2
(w1 − w2),

w̃ = 2(w2 − w1)(1− r1)x̃+ w1 +
r1

2
(w2 − w1).

(S2.31)

Therefore

ww̃ = 2(w2 − w1)(1− r1)wx̃+ w
[
w1 +

r1

2
(w2 − w1)

]
. (S2.32)

As wx̃ = w1(x− r1D), we have

ww̃ = 2(w2 − w1)(1− r1)w1x− 2r1(1− r1)(w2 − w1)w1D +

+
[
2(w1 − w2)(1− r1)x+ w2 +

r1

2
(w1 − w2)

] [
w1 +

r1

2
(w2 − w1)

]
.

(S2.33)

Using D = x− 1
4 ,

ww̃ = r1(w1 − w2)

{
(1− r1)x(w1 + w2) +

1

2

[r1

2
(w1 + w2)− w2

]}
+ w1w2. (S2.34)

Therefore as 0 < r1 < 1 and w1 > w2, ww̃ > w1w2 if and only if

(1− r1)x(w1 + w2) +
1

2

[r1

2
(w1 + w2)− w2

]
> 0. (S2.35)

Treat the left side of the inequality (S2.35) as a function f() of r1, for 0 ≤ r1 ≤ 1, where

x,w1, w2 are parameters. In fact,

f(1) =
1

2

[
1

2
(w1 + w2)− w2

]
=

1

4
(w1 − w2) > 0, (S2.36)

f(0) = x(w1 + w2)− 1

2
w2. (S2.37)
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So (S2.35) is satisfied, and x∗ is internally stable, if x∗ > w2

2(w1+w2) . Now w1 = 1 + s,

w1 = 1. Thus we need x∗ > 1
2(s+2) . From (S2.28) we can write

Q(x) = r1(s+ 2)

{
(1− r1)sx2 +

[
−1

2
(1− r1)s+

1

2

(
1− r1

2

)
(s+ 2)

]
x− 1

4

(
1− r1

2

)}
,

(S2.38)

and we have Q(0) < 0 and

Q
(

1
2(s+2)

)
= r1(s+ 2)

−(1− r1)s(s+ 1)

4 (s+ 2)
2 < 0. (S2.39)

Since Q(x∗) = 0, we must have x∗ > 1
2(s+2) as desired.

Remark. Using (S2.38) it is easily seen that when s > 0

Q
(

1
4

)
= r1(s+ 2) · s

16
> 0. (S2.40)

Therefore as Q
(

1
2(s+2)

)
< 0, we conclude that when w1 > w2, 1

2(s+2) < x∗ < 1
4 . In

addition, as D∗ = x∗ − 1
4 , at equilibrium D∗ < 0.

External stability of the symmetric equilibrium

We next check the external stability of x∗ to the introduction of the modifier allele

m at the modifier locus. As x∗ is internally stable, its external stability is determined by

the 4×4 matrix L∗ex, which is the linear approximation of the transformation x′ = T̃◦Tx

near x∗ restricted to the components x5, x6, x7, x8 of x. As our transformation is T̃ ◦T,

then L∗ex = L̃
∗
◦ L∗, where we have

L∗ =
1

wL


a e h d

b f g c

c g f b

d h e a

 (41)

L̃
∗

=
1

w̃L


ã ẽ h̃ d̃

b̃ f̃ g̃ c̃

c̃ g̃ f̃ b̃

d̃ h̃ ẽ ã

 , (42)
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with
wL = 2w2 + (w1 − w2) [r1 + 4(1− r1)x∗]

w̃L = 2w1 + (w2 − w1) [r1 + 4(1− r1)x̃] ,
(S2.43)

and
a = w1[2− r2 − 2R(1− r2)(1− x∗)]

b = w2[R+ r2 − 2Rr2 − 2R(1− r2)x∗]

c = w2R[1− 2x∗(1− r2)]

d = 2w1x
∗R(1− r2)

e = w1[(1−R)r2 + 2R(1− r2)x∗]

f = w2[2− r2 −R(1− r2)(1 + 2x∗)]

g = w2R(1− r2)(1− 2x∗)

h = w1R[r2 + 2(1− r2)x∗]

(S2.44)

ã = w2[2− r2 − 2R(1− r2)(1− x̃)]

b̃ = w1[R+ r2 − 2Rr2 − 2R(1− r2)x̃]

c̃ = w1R[1− 2x̃(1− r2)]

d̃ = 2w2x̃R(1− r2)

ẽ = w2[(1−R)r2 + 2R(1− r2)x̃]

f̃ = w1[2− r2 −R(1− r2)(1 + 2x̃)]

g̃ = w1R(1− r2)(1− 2x̃)

h̃ = w2R[r2 + 2(1− r2)x̃].

(S2.45)

Here x̃ = Tx∗ and x∗ = T̃x̃. As L∗ex = L̃
∗
◦ L∗, due to the special form of L∗ and L̃

∗
.

L∗ex also has the same form, and the characteristic polynomial Q(λ) of L∗ex factors into

two quadratic polynomials, namely

Q(λ) = Q1(λ) ·Q2(λ). (S2.46)

The analysis of Q1(λ) and Q2(λ) gives the following result.

Result 4. The symmetric equilibrium x∗ is externally stable when r1 > r2 and unstable

when r1 < r2. Thus in this symmetric environment which changes every generation, larger

recombination rates are favored, and the evolutionary stable recombination rate is 1.
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Proof of Result 4.

We outline here the steps of the proof.

Let Q(λ) be the fourth degree characteristic polynomial determining the external

stability, with Q(λ) = Q(λ; r1, r2, R). Then

1. Q(λ) = Q1(λ) ·Q2(λ).

2. Qi(λ) = λ2 + piλ+ qi for i = 1, 2, where

pi > 0, 0 < qi < 1, ∆i = p2
i − 4qi > 0.

3. Qi(λ), for i = 1, 2, has two positive roots whose product is less than 1. Both roots

are less than 1 if and only if Qi(1) > 0.

4. Q1(1) = Q1(1; r1, r2, R) = (r1−r2)f1(r1, r2, R), where f1(r1, r2, R) > 0 for all possible

values of r1, r2, R.

5. When r1 > r2, then Q1(1) > 0, and the two roots of Q1(λ) = 0 are positive and less

than 1. When r1 < r2, then Q1(1) < 0, and Q1(λ) = 0 has a root larger than 1.

6. When R = 0, then Q1(λ;R) = Q2(λ;R), and also Q1(1;R = 0) = Q2(1;R = 0).

7. Q2(1;R) is an increasing function of R.

8. When R = 0, we have Q1(1;R = 0) > 0 when r1 > r2, therefore Q2(1;R) > 0 for all

R when r1 > r2.

9. When r1 > r2, both Q1(1) and Q2(1) are positive, hence all four roots of Q(λ) = 0

are positive and less than 1 making the equilibrium externally stable.

10. When r1 < r2, then Q1(1) < 0, and so Q(λ) = 0 has a root that is positive and larger

than 1, and our equilibrium is externally unstable.

All the steps above have been checked either analytically or using Mathematica for

some computations, especially for those determining the sign of an expression, given the

parameter space. Moreover, arguments involving the second polynomial Q2(λ) are based

on its following properties:
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The second polynomial Q2(λ) is the characteristic polynomial of

L∗ex =

(
f̃ − g̃ b̃− c̃

ẽ− h̃ ã− d̃

)(
f − g b− c

e− h a− d

)
,

where
w(a− d) = w1A w̃

(
ã− d̃

)
= w2A

w(f − g) = w2A w̃
(
f̃ − g̃

)
= w1A

w(b− c) = w2B w̃
(
b̃− c̃

)
= w1B

w(e− h) = w1B w̃
(
ẽ− h̃

)
= w2B,

A = 2− r2 − 2R(1− r1) = 2(1−R)− r2(1− 2R)

B = r2(1− 2R).

In fact,

L∗ex =
1

wLw̃L

(
w1w2A

2 + w2
1B

2
(
w1w2 + w2

1

)
AB(

w1w2 + w2
1

)
AB w1w2A

2 + w2
2B

2

)
.

Thus

Q2(λ) = λ2 −
2w1w2A

2 +
(
w2

1 + w2
2

)
B2

wLw̃L
λ+

w2
1w

2
2

(wLw̃L)
2

(
A2 −B2

)2
A2 −B2 = (A−B)(A+B) = 4(1−R)[1− r2 −R(1− 2r2)]

Q2(1) = 1−
2w1w2A

2 +
(
w2

1 + w2
2

)
B2

wLw̃L
+

w2
1w

2
2

(wLw̃L)
2

(
A2 −B2

)2
.

Let Q2(1) = Q2(1;R). We compute ∂Q2(1)
∂R using

∂A

∂R
= −2(1− r2),

∂B

∂R
= −2r2,

∂Q2(1)

∂R
= −

2w1w2 · 2A[−2(1− r2)] +
(
w2

1 + w2
2

)
· 2B[−2r2]

wLw̃L
+

+
w2

1w
2
2

(wLw̃L)
2 · 2(A2 −B2)

{
2A[−2(1− r2)]− 2B[−2r2]

}
.

Hence,
∂Q2(1)

∂R
=

8w1w2A(1− r2) + 4
(
w2

1 + w2
2

)
Br2

wLw̃L
−

− 8w2
1w

2
2

(wLw̃L)
2 (A2 −B2)[A(1− r2)−Br2],

∂Q2(1)

∂R
> 0⇐⇒ (wLw̃L)

[
8w1w2A(1− r2) + 4

(
w2

1 + w2
2

)
Br2

]
> 8w2

1w
2
2(A2 −B2)[A(1− r2)−Br2],

A2 −B2 = 4(1− r)[1− r2 −R(1− 2r2)].
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Thus ∂Q2(1)
∂R > 0 if

wLw̃LA(1− r2) > 4w1w2[1− r2 −R(1− 2r2)]A(1− r2).

As A > 0 and 0 < r2 < 1, this is true if

wLw̃L > 4w1w2[1− r2 −R(1− 2r2)].

But wLw̃L > 4w1w2 and 1− r2 −R(1− 2r2) < 1, and the above holds.

This sums up to the fact that Q2(1;R) is monotone increasing in R, thus proving

point 7. But since Q2(1, 0) > 0 when r1 > r2, therefore Q2(1;R) > 0 when r1 > r2 for all

0 < R < 1.
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