
Using multiple measurements of tissue to estimate individual- and
cell-type-specific gene expression via deconvolution
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Figure S1. The correlation between the measured and deconvolved expression for each cell
type as a function of the number of measures. We simulate cell mixture data using the
measured cell-type-specific expression and the estimated cell type fractions from the GTEx
data. We compare our proposed EM component of the MIND algorithm with the least squares
(LS) based method of csSAM (Shen-Orr et al., 2010).
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Figure S2. The comparison of the measured and deconvolved cell-type-specific expression.
The measured cell-type-specific expression is calculated as the sum of gene expression across all
cells of one cell type for each donor in (Habib et al., 2017). Note that the deconvolved and
measured cell-type-specific expression differ slightly in scale because of data normalization.
The scRNA-seq data have dropout (zero values) in the majority of gene expression.
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Figure S3. The deconvolved expression distinguishes cell types according to marker genes.
The boxplots visualize the distribution of cell-type-specific expression for GTEx subjects with
at least nine tissues. The subtitles show the marker gene and its corresponding cell type. For
each marker gene, its corresponding cell type matches with the cell type that has the maximum
average deconvolved expression.
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Figure S4. The estimated cell size in the scRNA-seq data of Zeisel et al. (2015). Top:
neurons (interneurons and pyramidal neurons) have larger cell sizes as compared to
non-neurons. Bottom: the average read (left) and gene count with nonzero read (right) vs. cell
size. Both have a correlation of 0.6-0.7. The red line is the smooth curve.
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Figure S5. The mapping of variable expression across brain regions onto cell-type-specific
expression. The top panel shows the boxplots of tissue-level expression over individuals for six
genes/RNA markers and each brain region, and the bottom panel visualizes the
cell-type-specific expression for each cell type.
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Figure S6. The age trends for tissue-level expression and cell-type-specific expression. Each
row is a gene. The first column shows the tissue-level data and the second column shows the
cell-type-specific expression. The tissue-level data have been centered per tissue sample.
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Figure S7. The overlap between eQTLs appearing in multiple cell types and those in each
GTEx tissue type. For eQTLs that appear in one, two, three, and four cell types, respectively,
we calculate their probability of being identified in each tissue type.
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different cell types (in log10 scale) based on scRNA-seq data from Darmanis et al. (2015).
Endothelial and microglia cells are excluded since the numbers of cells are small (≤20).

July 23, 2018 8/13



Table S1. The correlation between the estimated fraction of each cell type and the expression fraction
of the corresponding marker gene within each of the GTEx brain tissues. The expression fraction of
the marker gene within each tissue sample is calculated as the ratio of the expression of marker gene
over the sum of the expression of all genes (Zhu et al., 2018). This is to compare the performance of
different deconvolution schemes. The scheme with the highest correlation for each marker gene is in
boldface. The low correlation for GABAergic neuron may be caused by its diversity. Scheme 4 can be
used to estimate cell type fractions when treating neuron as a whole. We use Scheme 3 to estimate cell
type fractions in GTEx since it has better performance for the two neuronal subtypes (GABAergic and
pyramidal).

Cell type Gene Scheme 1 Scheme 2 Scheme 3 Scheme 4

Astrocyte

SLC1A2 0.81 0.76 0.70 0.68
AQP4 0.62 0.61 0.60 0.56
FGFR3 0.80 0.80 0.77 0.74
GJB6 0.73 0.71 0.67 0.64

Oligodendrocyte

MBP 0.76 0.79 0.78 0.79
SOX10 0.88 0.85 0.83 0.84
MAG 0.78 0.78 0.76 0.75
MOG 0.82 0.81 0.79 0.79

GABAergic neuron
GAD1 0.33 0.35 0.40 0.54
GAD2 0.41 0.40 0.48 0.34

SLC32A1 0.48 0.46 0.50 0.34
Pyramidal neuron SLC17A7 0.77 0.76 0.84 0.61

GABAergic+Pyramidal neuron MYT1L 0.79 0.79 0.85 0.83
Scheme 1: uses 269 NeuroExpresso samples with 11 types of neurotransmitter and 2 single-cell
clusters of endothelial cell and deconvolves GTEx brain tissues into 12 cell types.
Scheme 2: uses 212 NeuroExpresso samples and deconvolves GTEx brain tissues into 7 cell types,
including three glial cells and four neuronal cells (six oligodendrocyte samples in NeuroExpresso
that may be contaminated are excluded).
Scheme 3: excludes cholinergic and glutamatergic neurons on the basis of Scheme 2, and thus
uses 188 NeuroExpresso samples and deconvolves GTEx brain tissues into 5 cell types.
Scheme 4: uses 212 NeuroExpresso samples and deconvolves GTEx brain tissues into 4 cell
types, including three glial cells and neuron. Since it has no specific fractions for GABAergic
and pyramidal neurons, the correlations for the two cell types are italicized.
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S1 Appendix. Derivation of the algorithm. 1

An EM algorithm framework for the full model 2

The parameters in the deconvolution model (3) are the two covariance matrices for random 3

effects, Σg and Σc, and the error variance σ2
e . The dimension of Σc is relatively low and thus it 4

can be estimated directly via an EM algorithm. 5

The complete data log-likelihood is given by 6

`
(
Σg,Σc, σ

2
e

)
= const− p

2

n∑
i=1

tilog(σ2
e)−

1
2σ2

e

n∑
i=1

(xi −Wiαi)
′
(xi −Wiαi)

−1
2nklog|Σg| −

1
2nplog|Σc| −

1
2

n∑
i=1
α

′
i

(
Σ−1
g ⊗ Σ−1

c

)
αi.

The E-step is to calculate the expected value of the above statistics given the observed data 7

and the current parameter estimates (γ(t) = (Σ(t)
g ,Σ(t)

c , σ
2(t)
e )) 8

E
(
`
(
Σg,Σc, σ

2
e

)
|x,γ(t)

)
= const− p

2

n∑
i=1

tilog(σ2
e)−

1
2nklog|Σg| −

1
2nplog|Σc|

− 1
2σ2

e
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i=1

[
E
(
ei|xi,γ(t)
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E
(
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)
+ tr

(
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(
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i

(
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c

)
µ

(t)
i + tr
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Σ−1
g ⊗ Σ−1

c

)
Σ(t)
i

)]
, (1)

where 9

µ
(t)
i = E

(
αi|xi,γ(t)

)
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α W
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i

(
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α W
′
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)−1
xi = Σ(t)

i W
′
ixi/σ
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e

= Σ(t)
i vec(W ∗′

i Xi)/σ2(t)
e

is the empirical Bayes estimate of αi and its covariance matrix is 10
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(
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)
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(
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For error term ei, E
(
ei|xi,γ(t)

)
= σ

2(t)
e

(
R

(t)
i

)−1
xi, var

(
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= 11
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e Ipti − σ
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, R
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α W
′
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e Ipti 12

In the M-step, to obtain closed-form solutions for variance parameters when Kronecker
products involved, we rewrite Σ(t)

i as a Kronecker product singular value decomposition
(KPSVD) (Van Loan, 2000), Σ(t)

i =
∑
l δilGil ⊗Hil, where Gil is a p× p matrix and Hil is a

k × k matrix. Based on the properties of the Kronecker product, we derive the closed-form
estimates:

Σ̂(t+1)
c = 1

np

n∑
i=1

[
AiΣ−1

g A
′
i +

∑
l

δiltr
(
GilΣ−1

g

)
H′
il

]
,

where Ai is a k × p matrix such that vec(Ai) = µ
(t)
i . As noted in Glanz and Carvalho (2013), 13

there is a non-identifiability issue in the Kronecker product. To resolve this issue, we scaled Σc 14

with its first element and set the first element as one. 15
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The error variance estimate is

σ2(t)
e =

n∑
i=1

[
E
(
e

′
i|xi,γ(t)

)
E
(
ei|xi,γ(t)

)
+ tr

(
var

(
ei|xi, γ(t)

))]
/

(
p

n∑
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ti

)
.

The dimension of Σg is hundreds and we assume a sparse inverse covariance (precision) 16

matrix. It can be estimated via an alternating direction method of multipliers (ADMM) 17

algorithm. 18

An ADMM algorithm to estimate a sparse precision matrix for genes 19

The major challenge in the model is the estimation of the gene precision matrix, Θ = Σ−1
g . 20

To estimate Θ in each M-step, we first rewrite the expected complete data log-likelihood 21

function in Eq (1) as a function of the gene precision matrix l (Θ). We then obtain the 22

penalized MLEs for Θ by maximizing the penalized log-likelihood, which is the likelihood 23

function plus a graphical lasso penalty on Θ. 24

Following the idea in Danaher et al. (2014), we use the ADMM algorithm. The problem is
equivalent to minimizeΘ − 2l (Θ) + λ |T|1 subject to T = Θ. With an additional penalty (the
augmentation) and a Lagrange multiplier matrix U scaled by a penalty parameter ρ, we write
the scaled augmented Lagrangian as

Lρ (Θ,T,U) = −2l (Θ) + λn |T|1 + nρ

2 ‖Θ−T + U‖2F −
nρ

2 ‖U‖
2
F ,

and here we use ρ = 1. The idea is to minimize Lρ (Θ,T,U) with respect to Θ and T, 25

respectively, and then update U at each iteration. Algorithm S1 provides the details for 26

re-estimating the regularized Θ within each iteration of the M-step. The tuning parameter (λ) 27

can be selected by Akaike information criterion (Danaher et al., 2014). 28

Algorithm S1 The ADMM algorithm for re-estimating regularized Θ within the M-step
1. Initialize with Θ = I,U = T = 0.
2. Minimize the target function −2l (Θ)+nρ ‖Θ−T + U‖2F /2 with respect to Θ. Let ΛΩΛ′ be

the eigendecomposition of the derivative of the target function,
∑n
i=1 Si/nk+ρ

(
U(t) −T(t)

)
/k,

where Si = A
′
iΣ−1

c Ai +
∑
l δiltr

(
HilΣ−1

c

)
G′
il. We have the estimate Θ(t+1) as ΛΩ̃Λ′

, where

Ω̃ is a diagonal matrix with the ith diagonal element as k
(
−ωii +

√
ω2
ii + 4ρ/k

)
/2ρ, where

ωii is the ith diagonal element of Ω.
3. Minimize λ |T|1 + ρ ‖T−Θ−U‖2F /2 with respect to T, where |T|1 =

∑
i 6=j |Tij |. Let

A = Θ + U. We have T (t+1)
ii = A

(t)
ii , i = 1, . . . ,K, for diagonal elements, and for i 6= j,

T
(t+1)
ij = sgn

(
A

(t)
ij

) (∣∣∣A(t)
ij

∣∣∣− λ/ρ)
+
.

4. Update U(t+1) = U(t) + Θ(t+1) −T(t+1).
5. Iterate Step 2-4 until convergence.

An EM algorithm for the simplified deconvolution model 29

The complete data log-likelihood is given by 30
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The E-step is to calculate the expected value of the above statistics given the observed data 31

and the current parameter estimates (γ(t) = (Σ(t)
c , σ

2(t)
e )) 32
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For the error term, 35
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In the M-step, we derive the estimate of the covariance matrix of random effects as
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The error variance estimate is
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