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APPENDIX A: PROOFS
We first provide a summary of assumptions made in the main text.

• The centered genotypes of n individuals x1, . . . ,xn
i.i.d.∼ x, where x := (x1, . . . , xp)ᵀ, E(x) = 0,

Var(x) = Σx = diag(σx)Rdiag(σx) is finite, |E(xjxkxlxm)| < ∞ for any j, k, l, m ∈ [p]. Note that
these moment assumptions are satisfied by default for genotype data.
• The additive errors ε1, . . . , εn

i.i.d.∼ ε, where E(ε) = 0 and Var(ε) = τ−1 < ∞.
• The centered phenotypes of n individuals y1, . . . , yn

i.i.d.∼ y, where y = xᵀβ + ε. For each indi-
vidual i ∈ [n], yi = xᵀi β+ εi, where xi, β and εi are mutually independent.

A.1. Proof of Proposition 2.1. Notice that β̂ = D−2Xᵀy, Ŝ =
√

n−1yᵀy · D−1 and

−2 log Lrss(β; β̂, Ŝ, R̂) = p log(2π) + log |ŜR̂Ŝ|+ β̂ᵀ(ŜR̂Ŝ)−1β̂− 2β̂ᵀŜ−2β+ βᵀŜ−1R̂Ŝ−1β,
−2 log Lmvn(β; y, X, τ) = p log(2πτ−1) + τyᵀy− 2τyᵀXβ+ τβᵀXᵀXβ.

If τ−1 = n−1yᵀy and R̂ = R̂sam, then Ŝ−2β̂ = τXᵀy and Ŝ−1R̂Ŝ−1 = τXᵀX, further implying that

(A.1) − 2[log L(β; β̂, S, R)− log L(β; y, X)] = log |D−1R̂D−1| − τyᵀ[I − X(XᵀX)Xᵀ]y.

A.2. Proof of Proposition 2.2. First define the statistic Tn ∈ R2p×1,

(A.2) Tn := n−1
(

∑n
i=1xi1yi, . . . , ∑n

i=1xipyi, ∑n
i=1x2

i1, . . . , ∑n
i=1x2

ip

)ᵀ
.

The asymptotic distribution of Tn is given by the multivariate Central Limit Theorem

(A.3)
√

n(Tn −µT)
d→ N (0, ΣT),

where µT := E(t), ΣT := Var(t) and t := (x1y, . . . , xpy, x2
1, . . . , x2

p)
ᵀ. Note that ΣT has finite entries

because τ−1, Σx and E(xjxkxlxm) are finite.
Next, for any ξ ∈ R2p×1, define the following function g(ξ) ∈ Rp×1:

(A.4) g(ξ) := (ξ1/ξp+1, . . . , ξp/ξ2p)
ᵀ.

Note that g(Tn) = β̂ and g(µT) = diag−2(σx)µxy = SRS−1β.
Use the multivariate Delta method to show that

(A.5)
√

n(g(Tn)− g(µT))
d→ N (0,∇ᵀg(µT)ΣT∇g(µT))

where ∇g(µT) ∈ R2p×p is the gradient matrix of g at µT. A straightforward calculation yields that

(A.6) ∇ᵀg(µT)ΣT∇g(µT) = σ2
y diag−1(σx)(R + ∆(c))diag−1(σx) = nS(R + ∆(c))S.
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The explicit form of ∆(c) is given by

(A.7) ∆(c) := diag−1(σx) · [G1(c) + G2(c) + Gᵀ
2 (c) + G3(c)] · diag−1(σx),

where functions Gi(c) : Rp×1 7→ Rp×p are defined as follows:

G1(c) := −(cᵀR−1c)Σx − diag(σx)ccᵀdiag(σx) + E[(xᵀdiag−1(σx)R−1c)2xxᵀ],
G2(c) := diag−1(σx)diag(c)W(c), [W(c)]ij := σx,iσ

2
x,jci − cᵀR−1diag−1(σx)E(xix2

jx),

G3(c) := diag−1(σx) diag(c) Σxx diag (c) diag−1(σx), [Σxx]ij := Cov(x2
i , x2

j ).

Notice that Gi(c) are continuous functions of c, Gi(0) = 0, and Gi(c) = O(maxj c2
j ) for i = 1, 2, 3.

A.3. Proof of Proposition 2.3. First note that

logN (β̂; SRS−1β, SRS)− logN (β̂; SRS−1β, n−1Σ)

=
1
2

{
log |R + ∆(c)| − log |R|+ σ−2

y λᵀdiag(σx)[(R + ∆(c))−1 − R−1]diag(σx)λ
}

,(A.8)

where λ :=
√

n(β̂− SRS−1β). Since the determinant and inverse of a matrix are both continuous,
we invoke Proposition 2.2, that is, λ = Op(1) and ∆(c) = O(maxj c2

j ), to complete the proof.

A.4. Proof of Proposition 3.1. Since the matrix X is column-centered,

(A.9) V(Xβ) = n−1∑n
i=1(x

ᵀ
i β)

2 = n−1trace[(Xβ)(Xβ)ᵀ] = n−1βᵀXᵀXβ,

and therefore,

(A.10) E[V(Xβ)|S, X] = µᵀ
β · (n

−1XᵀX) ·µβ + trace[(n−1XᵀX) · Σβ],

where µβ := E(β|S) = 0 and Σβ := Var(β|S) = (πσ2
B + σ2

P) · Ip. Hence,

E[V(Xβ)] = E[E[V(Xβ)|S, X]] = (πσ2
B + σ2

P) ·∑
p
j=1E[V(Xj)] =

h
∑

p
j=1n−1s−2

j
·∑p

j=1E[V(Xj)].

From the definition of {sj} we can see that E[V(Xj)] = n−1s−2
j E[V(y)], implying that

(A.11) E[V(Xβ)] =
h

∑
p
j=1n−1s−2

j
·∑p

j=1n−1s−2
j E[V(y)] = h · E[V(y)].

APPENDIX B: DETAILS OF POSTERIOR SAMPLING SCHEME
We describe the Markov chain Monte Carlo (MCMC) algorithms in terms of {S, R}, and then

replace the unknown {S, R} with their estimates {Ŝ, R̂} in practice. This is similar to the likelihood
derivation and prior specification in the main text.

B.1. Rank-based strategy. When locally updating the SNP-specific parameters (e.g. genetic
effect β j and sparsity indicator γj for each SNP j) in the MCMC algorithms, we allocate more
computational resources to SNPs with larger marginal association signals, using the rank-based
strategy (Guan and Stephens, 2011). In particular, we first rank all the variants based on the
single-SNP p-values and draw one SNP to update according to some probability distributions with
decreasing probability. In our current implementation, we use a mixture distribution qp = 0.3up +
0.7gp, where up is a discrete uniform distribution and gp is a geometric distribution truncated to
1, . . . , p with its parameter chosen to give a mean of 2000.

Based on qp, we introduce Q(·|γ), a proposal for the indicator γ. To propose a new value γ∗ given
the current value γ, we start by setting γ∗ = γ and then randomly choose one of the following:
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1. With probability Pa, draw SNP r according to qp until γr = 0 and set γ∗r = 1.
2. With probability Pr, draw SNP r uniformly from {j : γj = 1} and set γ∗r = 0.
3. With probability Pe, sample two SNPs by the above two steps and switch their indicators.

The default setting in our software is Pa = Pr = 0.4, Pe = 0.2.

B.2. BVSR prior. For RSS with BVSR prior, we use Metropolis-Hastings (MH) algorithm to
obtain posterior samples of (γ, π, h) on the product space of {0, 1}p × (0, 1)× (0, 1),

(B.1) p(γ, π, h|β̂, S, R) ∝ p(β̂|S, R,γ, π, h)p(γ|π)p(π)p(h).

Here we are exploiting the fact thatβ can be integrated out analytically to compute p(β̂|S, R,γ, π, h):

(B.2) β̂|S, R,γ, π, h ∼ N (0, SRS + σ2
B MγMᵀ

γ),

where M := SRS−1 and Mγ denotes the sub-matrix of M restricted to those columns j for which
γj = 1. We update γ using the rank-based proposal Q(·|γ). We update log π by adding a random
number from U (−0.05, 0.05) to the current value, and update h by adding a random number from
U (−0.1, 0.1) to the current value. New values of log π and h outside boundaries are reflected back.

For each simulated posterior draw of (γ, π, h), we sample β according to its conditional distribu-
tions given (γ, π, h) and (β̂, S, R):

βγ |β̂, S, R,γ, π, h ∼ N (µ, Ω−1),(B.3)
β−γ |β̂, S, R,γ, π, h ∼ δ0,(B.4)

where βγ and β−γ denote the subsets of β corresponding to the entries that γj = 1 and 0 respec-
tively, δ0 denotes the point mass at zero and,

Ω := Mᵀ
γ(SRS)−1Mγ + σ−2

B (γ, π, h)I|γ|,(B.5)
µ := Ω−1Mᵀ

γ(SRS)−1β̂.(B.6)

The marginal likelihood (B.2), up to some constant, can be written in terms of (Ω,µ),

(B.7) p(β̂|S, R,γ, π, h) ∝ σ
−|γ|
B |Ω|−1/2 exp{µᵀqγ/2},

where qγ denotes the subset of q := S−1β corresponding to the entries that γj = 1. The matrix
computation in a single step of the MCMC algorithm above involves one Cholesky decomposition of
Ω and three triangular linear systems. Hence, the computational cost for each iteration of MCMC
is O(|γ|3 + 3|γ|2), where |γ| denotes the number of non-zero entries in γ.

To improve precision, we can use Rao-Blackwellized estimates. For SPIP, we have

Pr(γj = 1|β̂, S, R) = E(Pr(γj = 1|β̂, S, R, ξ−j)) ≈ M−1∑M
i=1Pr(γj = 1|β̂, S, R, ξ(i)−j)

where ξ−j stands for
{
β−j,γ−j, π, h

}
, γ−j and β−j denote the vectors γ and β excluding the jth

coordinate and ξ(i)−j denotes the ith MCMC sample from the posterior distribution of ξ−j. For the
posterior mean of the multiple-SNP effect at SNP j, we have

E(β j|β̂, S, R) = E(E(β j|β̂, S, R, ξ−j)) ≈ M−1∑M
i=1E(β j|β̂, S, R, γj = 1, ξ(i)−j)Pr(γj = 1|β̂, S, R, ξ(i)−j).
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To obtain the Rao-Blackwellized estimates, we only need p(γj|β̂, S, R, ξ−j) and p(β j|β̂, S, R, γj, ξ−j):

Pr(γj = 1|β̂, S, R, ξ−j)

Pr(γj = 0|β̂, S, R, ξ−j)
=

π

1− π

√√√√ s2
j

s2
j + σ2

B
exp

 1
2(σ−2

B + s−2
j )

(
β̂ j

s2
j
−∑

i 6=j

rijβi

sisj

)2


β j|β̂, S, R, γj = 1, ξ−j ∼ N
(

1
σ−2

B + s−2
j

(
β̂ j

s2
j
−∑

i 6=j

rijβi

sisj

)
,

1
σ−2

B + s−2
j

)
β j|β̂, S, R, γj = 0, ξ−j ∼ δ0

where rij is the (i, j)-th entry of R.

B.3. BSLMM prior. We propose a component-wise MCMC algorithm for RSS with BSLMM
prior. First, we re-parameterize the multiple-SNP effect sizes β j as follows

β j|γj = 1, π, h, ρ, S =
√

σ2
B + σ2

P · β̃ j(B.8)
β j|γj = 0, π, h, ρ, S = σP · β̃ j(B.9)

where the standardized effect sizes β̃ j
i.i.d.∼ N (0, 1), for j ∈ {1, . . . , p}. Equivalently,

(B.10) β = Bβ̃, β̃ ∼ N (0, Ip)

where the scaling matrix B is diagonal with the jth diagonal bj defined as

(B.11) bj = σP1{γj = 0}+
√

σ2
B + σ2

P1{γj = 1}.

The new parameterization could help speed up the convergence of MCMC, since β̃ are independent
with (γ, π, h, ρ) a priori. We then draw posterior samples of (β̃,γ, π, h, ρ) iteratively.
• Given (β̃, π, h, ρ), we update γ by a standard MH algorithm, where the proposal is Q(·|γ).
• Given (γ, π, h, ρ), we update β̃ by a mixture of global and local moves. With probability Pg, we

draw a new value of β̃ from its full conditional,

(B.12) β̃|β̂, S, R,γ, π, h, ρ ∼ N ((BS−1RS−1B + I)−1BS−2β̂, (BS−1RS−1B + I)−1).

With probability 1− Pg, we randomly pick a SNP j according to the distribution qp and draw
β̃ j from its full conditional

(B.13) β̃ j|β̂, S, R, β̃−j,γ, π, h, ρ ∼ N
(

bjsj`j

s2
j + b2

j
,

s2
j

s2
j + b2

j

)
, `j :=

β̂ j

sj
−∑

i 6=j

rijbi β̃i

si
.

• Given (β̃,γ, h, ρ), we update π by a Metropolis algorithm, where the proposal is symmetric
Gaussian random walks on log((π − p−1)/(1− π)).
• Given (β̃,γ, π, ρ), we update h by a Metropolis algorithm, where the proposal is symmetric

Gaussian random walks on log(h/(1− h)).
• Given (β̃,γ, π, h), we update ρ by a Metropolis algorithm, where the proposal is symmetric

Gaussian random walks on log(ρ/(1− ρ)).
The most computationally intensive step is drawing β̃ from a p-dimensional multivariate nor-
mal distribution (B.12). For each draw, one Cholesky decomposition of BS−1RS−1B + I and two
triangular linear systems are required. Since matrix R is banded with some bandwidth w (Wen
and Stephens, 2010), the matrix BS−1RS−1B + I also has the same bandwidth and therefore, the
per-iteration cost of the algorithm above is at most O(pw2 + 2p2). For all the simulations, we set
Pg = 0.05. For the analysis of adult height data, we set Pg = 0.001 (the default value in our software).
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B.4. Small world proposal. To improve the convergence rate of the MCMC schemes, we use
the “small-world” proposal (Guan and Krone, 2007) as an add-on for every Metropolis step in our
main algorithms above. Specifically, with probability 0.3 in each iteration, a long-range move is
made by compounding randomly many (from 2 to 20) local proposals.

APPENDIX C: CONNECTION WITH LD SCORE REGRESSION
The LD score regression model (Bulik-Sullivan et al., 2015) is given by,

(C.1) E(χ2
j |`j) = nh2`j/p + na + 1,

where n is the sample size, p is the number of SNPs, h2/p is the heritability per SNP, a is the
contribution of confounding biases per individual, χ2

j := (β̂ j/sj)
2 is the single-SNP association χ2

statistic and `j := ∑
p
k=1r2

jk is the “LD score” of SNP j (rjk is the pairwise LD between SNP j and k).
To draw the connection between the LD score regression and RSS, we consider

(C.2) β̂|S, R,β ∼ N (SRS−1β, SRS + na · S2),

which is a generalization of RSS accounting for possible over-dispersion in real data. When a = 0,
model (C.2) becomes the original RSS. Let z = (z1, . . . , zp)ᵀ, where zj := β̂ j/sj is the single-SNP
z-score of SNP j and z2

j = χ2
j . Noting that z = S−1β, we rewrite (C.2) in terms of z-scores,

(C.3) z|S, R,β ∼ N (RS−1β, R + na · Ip).

Next, we specify the following prior on β:

(C.4) p(β|S, R) = ∏
p
j=1 p(β j|S, R), E(β j|S, R) = 0, Var(β j|S, R) = nh2s2

j /p.

Since sj := (
√

nσx,j)
−1σy, the the prior variance of β j is (pσ2

x,j)
−1(h2σ2

y ) and thus prior (C.4) does not
depend on the sample size n.

Integrating out β under prior (C.4), we obtain the LD score regression model:

E(z2
j |S, R) = E(Var(zj|S, R,β)) + E(E2(zj|S, R,β))

= 1 + na + ∑
p
k=1r2

jks−2
k E(β2

k|S, R) + ∑k 6=`rjkrj`s−1
k s−1

` E(βkβ`|S, R)

= 1 + na + (nh2/p)∑p
k=1r2

jk.(C.5)

APPENDIX D: GWAS META-ANALYSIS
The derivation of RSS assumes that {β̂ j, σ̂2

j } are calculated from a single study sample. When
there are multiple studies, this assumption requires that {β̂ j, σ̂2

j } should be the summary results
of a single sample where the individual-level data from each study are pooled. However, the sum-
mary data released by most large GWAS are not obtained from the pooled sample, and are ac-
tually synthesized results based on the single-SNP summary statistics from each research group
via meta-analysis (Evangelou and Ioannidis, 2013). A series of results in literature have revealed
the exact/asymptotic equivalence between meta-analysis estimates and pooled-sample estimates
(Olkin and Sampson, 1998; Mathew and Nordstrom, 1999; Lin and Zeng, 2010a,b). Hence, RSS
can be applied to the summary statistics from GWAS meta analysis.
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Phenotype Reference

Adult human height Allen et al. (2010)
Adult human height Wood et al. (2014)
Body mass index (BMI) Locke et al. (2015)
High-density lipoprotein (HDL) Teslovich et al. (2010)
HDL Global Lipids Genetics Consortium (2013)
Low-density lipoprotein (LDL) Teslovich et al. (2010)
LDL Global Lipids Genetics Consortium (2013)
Total cholesterol (TC) Teslovich et al. (2010)
TC Global Lipids Genetics Consortium (2013)
Triglycerides (TG) Teslovich et al. (2010)
TG Global Lipids Genetics Consortium (2013)
Cigarettes per day Tobacco and Genetics Consortium (2010)
Smoking age of onset Tobacco and Genetics Consortium (2010)
Ever versus never smoked Tobacco and Genetics Consortium (2010)
Current versus former smoker Tobacco and Genetics Consortium (2010)
Years of educational attainment Rietveld et al. (2013)
College completion or not Rietveld et al. (2013)
Schizophrenia Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014)
Alzheimer Lambert et al. (2013)
Coronary artery disease (CAD) Schunkert et al. (2011)
Type 2 diabetes (T2D) Morris et al. (2012)

Table 1
Full names of phenotypes and the corresponding references that are listed in the main text (Table 1)

Fig 1: Comparison of true PVE and SPVE given the true β. The simulated genotypes consist of 10,000 inde-
pendent SNPs from 1000 individuals, so we set R̂ as identity matrix; The real genotypes are 10,000 correlated
SNPs randomly drawn from Chromosome 16 (WTCCC UK Blood Service control group, 1458 individuals),
and R̂ is estimated from WTCCC 1958 British Birth Cohort (1480 individuals) and HapMap CEU genetic
maps using the shrinkage method in Wen and Stephens (2010). Solid dots indicate sample means of 200 repli-
cates; vertical bars indicate symmetric 95% intervals; orange line indicates the reference line with intercept 0
and slope 1. The tables summarize the RMSEs between SPVE and true PVE.
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