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Site and participant information 
 

 

Supplemental Figure S1: Site distribution 

Quality control  
To assess quality of Freesurfer reconstructions we computed the Euler index (Rosen et al., 

2018). The Euler number is a quantitative index of segmentation quality and has shown high 

overlap with manual quality control labelling . In the full sample we found a small but 

significant difference in both hemispheres (Figure S1) with the autism group having overall 

worse scan quality (d = 0.176 and d = 0.187 for left and right hemisphere respectively). We 

excluded all subjects with a Euler score of 300 or higher in either hemisphere. After 

thresholding based on Euler indices and after re-running the sample consisted of 870 

individuals with autism and 870 neurotypical individual, matched on Age and IQ. 
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Supplemental Figure S2: Euler quality control 

Panels A and B list the Euler indices for both left and right hemisphere, p-values for group differences were 
established with two-sided permutation testing (20000 permutations), Cohen’s d was computed using custom R 

code https://github.com/mvlombardo/utils/blob/master/cohens_d.R. Panels C and D show the left and right 

hemisphere Euler distribution across the different sites included in ABIDE. Raincloud plot were created using: 

https://micahallen.org/2018/03/15/introducing-raincloud-plots/ 
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Bootstrapping 
To assess the reliability of this w-score we bootstrapped the normative sample (1000 

bootstraps, with replacement) and computed 1000 bootstrapped w-scores for each individual 

and each brain region. To subsequently quantify the reliability of the w-score we computed an 

FDR corrected analogous p-value for each subject by computing the absolute position of the 

real w-score in the distribution of bootstrapped w-scores. The rationale being that if a real w-

score would be in the top 5% of the bootstrapped distribution it would likely not be a reliable 

score (e.g. the score would be influenced by only a small subset of the normative data). The 

median number of brain regions per subject with a significant p-value was 1 (out of 308), 

indicating that the w-score provides a robust measure of atypicality. 

 

 

Supplemental Figure S3: bootstrap validation 

Panel A shows the probability density distribution for the number of subjects likely to have an unreliable w-score in 

a given region. For a given region there is a median of 10 subjects (out of 714) for which the w-score is not reliable 
(e.g. has a p-value <0.05). Panel B shows the probability density distribution for the number of regions likely to 

have an unreliable w-score in a given subject. The median number of 'unreliable' brain regions per subject is 1. 

 

Multivariate clustering 
Using t-Distributed Stochastic Neighbour Embedding (tSNE) we projected all 308 cortical 

regions into a 2-dimensional space. Next, we estimated the optimal number of clusters within 

this 2 dimensional space using the optimum average silhouette width (Hennig and Liao, 2013).  

This identified an optimal number of two clusters. Finally, we re-ran k-medoid clustering with 

2 clusters and explored the overlap these clusters gave with diagnosis. 

 

Despite the limited main diagnosis effect on CT over the majority of brain regions and the fact 

that only a small subset of individuals appears to contribute to this difference, it may still be 



possible that the multivariate patterning in CT may capture some diagnostic effect. Thus, we 

performed exploratory clustering analysis to determine if raw CT values across the whole brain 

could be used to delineate the ASD group from the TD group. In addition, we reasoned a data-

driven clustering approach might also reveal subgroups within each group (Lombardo et al., 

2016). Results from clustering the neighbour embedded raw CT scores are shown in Figure 6. 

As can be observed in panel B, the within-group heterogeneity is entirely captured by 

normative heterogeneity and the overall density plots for both groups are close to identical. 

The pattern we find when projecting the whole brain raw cortical thickness into a 2-

dimensional embedding most closely resembles the 3rd scenario outlined by Marquand and 

colleagues (Marquand et al., 2016), whereby disease related variation is nested with the normal 

variation. Our results show that, when it comes to whole-brain cortical thickness, the condition 

related variation is entirely nested within the neurotypical variation. Obviously, the present 

clustering and embedding approaches only provide one way of clustering or segregating case-

control variation in cortical thickness. Other multivariate approaches that took into account a 

multitude of variables did reveal that multivariate clustering has the potential to identify 

subgroups (Hong et al., 2017). Additionally, other measures than CT might provide a different 

picture. In is interesting however to note that both dimensions were correlated with age. No 

correlations were observed with any of the other common phenotypic measures. Thus, this 2-

dimensional embedding likely captures the variability in cortical thickness expansion and 

thinning over the course of development, but is not sensitive enough to pick up potential 

alterations in the overall trajectory of this process between groups. 

 

 

Supplemental Figure S4: tSNE Clustering 

Panel A shows the results from k-medoid clustering of the 2D embedding of the raw CT values as achieved by 

tSNE. K-medoid clustering clearly identifies 2 clusters. However, as Panel B shows, these clusters did not provide 
any meaningful distinction on diagnosis.  

Cl 1 2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

● ●
●

●●
●

●

●●

●
●

●●
●●●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

● ●
●

●
●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●● ●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

● ● ●●
●

●●
●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

A

Dx Autism Control

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

● ●
●

●●
●

●

●●

●
●

●●
●●●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

● ●
●

●
●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●● ●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

● ● ●●
●

●●
●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

B



Individual summary ratios 
To isolate subsets of individuals with significant age-related CT deviance, we used a cut-off 

score of 2 standard deviations (i.e. w >= 2 or w<=2). This cut-off allows us to isolate specific 

ASD patients with markedly abnormal CT relative to age-norms for each individual brain 

region. We then calculated sample prevalence (percentage of all ASD patients with atypical w-

scores), in order to describe how frequent such individuals are in the ASD population and for 

each brain region individually. A sample prevalence map can then be computed to show the 

frequency of these patients across each brain region. We also wanted to assess how many 

patients have markedly atypical w-scores (beyond 2SD) across a majority of brain regions. 

This was achieved by computing an individual global w-score ratio as follows: 

 

𝑔𝑊 =	
∑𝑎𝑏𝑠(𝑤) > 2
∑𝑎𝑏𝑠(𝑤) < 2 

 

We also computed global w-score ratios for positive and negative w regions separately. 

 

 

Supplemental Figure S5: Global individual W-Score ratios 

Panel A shows the distribution of absolute global ratio scores for each age-bin. There is a total of 14 subjects for 

which the ratio score exceeds 0.5 meaning they have more atypical than typical regions. Panels B and C show the 

same but stratified for positive and negative outliers.  
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Supplemental Figure S6: Outlier age distribution per brain region 

Probability density plots of the age of all outliers for each brain region. Left and right refer to 

left and right hemisphere. 
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Age-related CT deviance relationships with SRS and ADOS 
An additional advantage of the use of normative modelling over the traditional case-control 

modelling is that we can use the individualized deviation as a novel metric for finding 

associations with phenotypic features. Here we used w-scores to compute Spearman 

correlations for the most commonly shared phenotypic features in the ABIDE dataset: ADOS, 

SRS, SCQ, AQ, FIQ and Age. After correcting for multiple comparisons across phenotype and 

region (6 phenotypic measures * 308 regions = 1848 tests) we identified a number of brain 

regions that survive multiple comparison corrections for the SRS and ADOS scores 

(supplementary figure S8). SRS is associated with w-scores primarily in areas of lateral frontal 

and parietal cortex, while ADOS is associated with w-scores primarily in lateral and inferior 

temporal cortex. Notably, these regions are largely different from regions that appear to show 

on-average differentiation in case-control and w-score analyses. 

 

Supplemental Figure S7: Phenotype – W-Score correlations 

Spearman correlations between ADOS and w-score in the top panel. The lower panel shows 

the same for the SRS. 

 
 

 



Surface area, LGI and Volume 
We applied the same approach to quantify outlier contribution and assess overall variance 

contribution in surface area, LGI and cortical volume. All three metrics consistently showed 

strong influence of sex and scanner site as important covariates (S8). In addition, cortical 

volume also showed a strong influence of age. For all three measures all canonical case-control 

differences, derived from standard LME modelling, disappear when region-wise outliers were 

removed (S9-S11). This strongly suggest that the majority of broad case-control differences 

were driven by a subgroup of individual outliers. 

 

Supplemental Figure S8: Variance contribution across measures 

Gender and scanning site are the dominant sources of covariance 

 

 

Volume 

 

Supplemental Figure S9: Canonical case-control comparisons for cortical volume 

The top panel shows the canonical case-control output. No regions passed FDR when region-

wise outliers were removed nor on the one sample w-score test. 
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Supplemental Figure S10: Canonical case-control comparisons for local gyrification 

The top panel shows the canonical case-control output. No regions pass FDR when region-

wise outliers are removed however in the w-score one sample test (lower panel) there are a 

number of regions that show significantly smaller LGI in ASD. 
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Supplemental Figure S11: Canonical case-control comparisons for surface area 

The top panel shows the canonical case-control output. No regions pass FDR when region-

wise outliers are removed however in the w-score one sample test (lower panel) there are a 

number of regions that show significantly smaller surface area in ASD. 
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