2	Supplementary Information for
3	
4	Culturing the ubiquitous freshwater actinobacterial acI lineage by supplying
5	a biochemical 'helper' catalase
6	
7	Suhyun Kim, Ilnam Kang, Ji-Hui Seo, and Jang-Cheon Cho
8	
9	Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
10	
11	Corresponding author: Jang-Cheon Cho
12	Email: chojc@inha.ac.kr
13	
14	
15	This file includes:
16	Supplementary information text
17	Figs. S1 to S9
18	Tables S1 to S5
19	References for SI reference citations
20	

21 Supplementary Information Text

Description of two proposed 'Candidatus' species. The average nucleotide identity (ANI) value 22 calculated from genome sequences between strain IMCC25003 and 'Ca. Planktophila sulfonica' MMS-IA-23 56 was 84% and between strains MCC26103 and 'Ca. Planktophila lacus' MMS-21-148 was 78%, which 24 25 were both below the 95-96% cut-off value for bacterial species demarcation (1, 2). Analysis of genomic DNA-DNA relatedness and differential phenotypic characteristics indicated that strains IMCC25003 and 26 IMCC26103 each represent novel species of the genus 'Candidatus Planktophila'. However, because the 27 two strains did not grow on a defined medium or a synthetic medium but replicated only in complex natural 28 lake water media, limiting the deposition of the acI strains in culture collections, we propose the 29 provisional names 'Candidatus Planktophila rubra' for strain IMCC25003 and 'Candidatus Planktophila 30 aquatilis' for strain IMCC26103. 31 32 'Candidatus Planktophila rubra' (ru'bra. L. fem. adj. rubra reddish, pertaining to the reddish color of 33 34 cells) 35 Represented by a cultured bacterial strain, IMCC25003. Gram-positive, aerobic, red-pigmented, non-36 motile, and chemoheterotrophic. Cells are curved rods with biovolume of 0.041 μ m³, 0.46–1.23 μ m (average 0.68 μm) long and 0.25–0.37 μm (average 0.30 μm) wide. Grows in FAMV+CM+AA 37 supplemented with >0.5 U mL⁻¹ catalase but does not grow in any liquid medium devoid of catalase and on 38 any solid agar medium. Growth occurs at 10–30°C (optimum, 25°C). No single carbon sources enhance 39 cellular growth. Requires sulfur-containing amino acids (methionine and cysteine) but prefers methionine. 40 The major fatty acids (>10%) are summed feature 3 ($C_{16:1} \omega 7c$ and/or $C_{16:1} \omega 7c$, 45.8%), $C_{16:0}$ (23.1%), and 41 42 $C_{14:0}$ (18.2%). Strain IMCC25003 has a genome size of 1.354 Mbp with DNA G+C content of 49.1%. The 43 complete genome sequence of strain IMCC25003 is available in GenBank (CP029557). Phylogenetically belongs to the acI-A1 tribe. 44 The representative strain IMCC25003 was isolated from a freshwater lake, Lake Soyang, Republic of 45 Korea, using a dilution-to-extinction culturing. 46

48 '*Candidatus* Planktophila aquatilis' (a.qua.ti'lis. L. fem. adj. *aquatilis* living, growing, or found, in or near
49 water, aquatic).

50	Represented by a cultured bacterial strain, IMCC26103. Gram-positive, aerobic, red-pigmented, non-
51	motile, and chemoheterotrophic. Cells are curved rods with biovolume of 0.061 μ m ³ , 0.49–1.23 μ m
52	(average 0.88 μm) long and 0.22–0.39 μm (average 0.31 μm) wide. Grows in FAMV+CM+AA
53	supplemented with >0.5 U mL ⁻¹ catalase but does not grow in any liquid medium devoid of catalase and on
54	any solid agar medium. Growth occurs at 10–30°C (optimum, 25°C). D-ribose and D-glucose enhance the
55	cellular growth. Requires sulfur-containing amino acids (methionine and cysteine) but prefers cysteine. The
56	major fatty acids (>10%) are C _{16:0} (28.5%), C _{18:1} ω9c (25.8%), summed feature 3 (C _{16:1} ω7c and/or C _{16:1}
57	ω 7 <i>c</i> , 12.3%), and C _{18:0} (10.5%). Strain IMCC26103 has a genome size of 1.457 Mbp with DNA G+C
58	content of 47.0%. The complete genome sequence of strain IMCC26103 is available in GenBank
59	(CP029558). Phylogenetically belongs to the acI-A4 tribe.
60	The representative strain IMCC26103 was isolated from a freshwater lake, Lake Soyang, Republic of
61	Korea, using a dilution-to-extinction culturing.
62	
63	Supplementary Materials and Methods
64	Measurement of bacterial cell densities. Bacterial cell densities in all growth experiments were
65	determined by flow cytometry (Guava easyCyte Plus, Millipore) as described previously (3, 4). After 200
66	μ L of bacterial cultures were stained with SYBR Green I (5× final concentration, Invitrogen) for 1 h, each
67	stained sample was run for 10 s or until total cell counts reached 5000. To accurately measure the cell
68	counts in the samples with high cell density, the stained sample was diluted to contain less than 200 cells
69	μL ⁻¹ .

70

71 Measurement o	f <i>katG</i> expression by	qPCR. Strain IMCC25003	was grown in triplicate in 4 L of
------------------	-----------------------------	------------------------	-----------------------------------

72 FAMV+CM+AA supplemented with 1 U mL⁻¹ of catalase until the early stationary phase. Each 4-L

bacterial culture was harvested by centrifugation at $20,000 \times g$ for 120 min. To examine the expression of

- IMCC25003 *katG* and compare the relative level of gene expression according to H_2O_2 concentrations,
- harvested cells were treated with different concentrations of H_2O_2 (10, 50, and 100 μ M) for 30 min and

untreated cells were used as a control. RNA was extracted using TRIzol (Sigma-Aldrich). Reverse 76 77 transcription was performed with 1 µg of RNA using qPCRBIO cDNA Synthesis Kit (PCRBIO Systems) and real-time qPCR was conducted using qPCRBIO SyGreen Blue Mix Lo-ROX (PCRBIO Systems) in a 78 79 real-time thermal cycler (Rotor-Gene 3000, Corbett Research). The katG primer set (forward, 5'-CATGGCGATGAATGATGAAG-3'; reverse, 5'-GCTGTTCTTCCAGCCAAGTC-3') for targeting katG of 80 IMCC25003 was used to evaluate gene expression and the GAPDH gene of IMCC25003 was employed as 81 a housekeeping gene with the GAPDH primer set (forward, 5'-GTTCAGCGACAGACCTCACA-3'; 82 83 reverse, 5'-TGGTGAGCTGTGAATCGAAG-3').

84

85 Expression, purification, and characterization of KatG from IMCC25003. The gene encoding catalaseperoxidase (KatG) of IMCC25003 was amplified by PCR using the following primers: forward, 5'-86 CATATGATGACTCAAGAATCAACTCC-3'; reverse, 5'-CTCGAGTTACTTCTTCTTTGAC-3'. The 87 PCR product was inserted into the pET-15b vector (Novagen) and expressed in Escherichia coli BL21 88 (DE3) using 1 mM isopropyl- β -D-thiogalatoside (Sigma-Aldrich). The expressed KatG-His recombinant 89 protein was purified using a gravity-flow Ni²⁺-nitrilotriacetic acid affinity column (Novagen). The high 90 concentration of salts used for elution in the affinity column was removed using a PD-10 desalting column 91 92 (GE Healthcare). To increase protein purity, the eluted fractions were applied to a Superose-12 FPLC column (10×300 mm, GE Healthcare) equilibrated with 50 mM potassium phosphate buffer (pH 7.0). The 93 purified recombinant proteins were concentrated to approximately 10 mg mL⁻¹ in Centricon tubes (MWCO 94 10,000 Da; Millipore) and stored at 4°C. All purification steps were carried out at 4°C or on ice. 95 The native molecular weight of IMCC25003 KatG was determined by size exclusion chromatography 96 97 on a Superose-12 FPLC column (10 × 300 mm, GE Healthcare) equilibrated with 50 mM potassium phosphate buffer (pH 7.0). The molecular weights of the subunits were determined by discontinuous 98 sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) according to the standard 99 Laemmli method. Catalytic activity of recombinant IMCC25003 KatG was determined using a 100 101 spectrophotometric assay by measuring the decomposition of H₂O₂ at 240 nm. Catalase-specific activity was quantified by allowing varying amounts of enzyme (0-1.0 µg for bovine catalase; 0-5.0 µg for 102 IMCC25003 KatG) to react with 5 mM H₂O₂ in 50 mM potassium phosphate buffer (pH 7.0) at 25°C. The 103

absorption coefficient at 240 nm, pH 7.0, and 25°C for H_2O_2 was determined to be 49.8 M⁻¹ cm⁻¹. Kinetic parameters were determined in triplicate from initial linear reaction rates of H_2O_2 ranging from 1 to 10 mM. The apparent Km (mM) and kcat (s⁻¹) values at these substrate concentrations were determined from a Lineweaver-Burk plots. Catalase from bovine liver was used as a positive control. In SDS-PAGE, staining for catalase activity was performed with the ferricyanide negative staining method using 2% (w/v) ferric chloride and 2% (w/v) potassium ferricyanide solution, and peroxidase activity was detected by doublestaining with 3,3',5,5'-tetramethylbenzidine (5).

111

Phylogenetic analyses based on 16S rRNA gene, whole genome, and KatG protein. The 16S rRNA 112 gene sequences of the acI genomes (6-8) were downloaded from the IMG database and GenBank, aligned 113 using SINA online aligner, and imported into the ARB-SILVA database (SSURef NR 99, release 123). 114 Multiple alignments of the imported sequences and other reference sequences of the acI lineage were 115 116 exported with the 'ssuref:bacteria' filter and used to construct a maximum-likelihood tree in RAxML 8.2.7 117 with the GTRGAMMA model. Phylogenetic assignment of the sequences was performed as described by Newton et al. (9) and the recently proposed names for the two Candidatus genera (8). 118 119 To build phylogenomic trees, protein sequences predicted in 4 completed acI genomes (7) and singlecell genomes (6) and 16 recently published acI genomes (8) were downloaded from the IMG database and 120 NCBI RefSeq database. Downloaded protein sequences were processed using CheckM (10), which 121 122 produces concatenated alignment of 43 conserved proteins. This concatenated alignment was used to build a maximum-likelihood tree using RAxML 8.2.7 with the PROTGAMMAAUTO model. 123 124 KatG proteins in the acI genomes (listed in SI Appendix, Table S4) were searched by BLASTp using the 125 KatG sequence of IMCC25003 as a query and acl protein sequences downloaded above as a search database, which revealed a total of 20 acI KatG proteins. Phylogenetic trees of KatG proteins were 126 constructed to identify the phylogenetic positions of the KatGs found in the acI genomes. Sequences 127 128 collected for tree construction included the following: 20 acI KatG proteins, 16 KatG proteins showing high similarities to acl KatG proteins in BLASTp against the nr database of GenBank, 19 actinobacterial 129 KatG proteins searched from the genomes representing diverse taxonomic groups of the phylum 130 131 Actinobacteria (7), and >300 KatG proteins downloaded from PeroxiBase (11)

132	(http://peroxibase.toulouse.inra.fr; Category 'Catalase peroxidase' of 'Class I peroxidase superfamily'
133	under 'Non Animal peroxidase'). After sequence collection, several rounds of alignment and tree building
134	were performed, and some sequences were excluded because of their short length, poor alignment, or
135	unstable positioning. Finally, 303 KatG proteins were selected, aligned with Muscle (12) implemented in
136	the MEGA 6 program, and used to construct a maximum likelihood tree using RAxML (version 8.2.7),
137	with automatic model selection based on aic criterion (-m PROTGAMMAAUTOauto-prot=aic). The
138	selected model was LG likelihood with empirical base frequencies. Grouping of the KatG proteins was
139	performed as described by Zamocky et al. (13).

141 Supplementary Figures

142

Fig. S1. Maximum-likelihood tree based on 16S rRNA gene sequences showing the phylogenetic position
of strains IMCC25003 and IMCC26103. The two strains isolated in this study are marked in red.

- 146 Streptomyces sannanensis (AB184579) and Streptomyces griseus (AY999909) were used as outgroup.
- 147 Bootstrap supporting values (from 600 replicates) are shown at the nodes as filled circles (≥90%), half-
- filled circles (\geq 70%), and empty circles (\geq 50%). Bar, 0.10 substitutions per nucleotide position.

Fig. S2. Revival and transfer cultures of strains IMCC25003 and IMCC26103. (a) Growth curve of a revival culture of strain IMCC26103. (b) Flow cytometry plots of strain IMCC26103 obtained at the time points indicated in (a). Left, histograms showing the distribution of cell counts (y-axis) according to the green fluorescence (x-axis); Right, dot plots showing the distribution of cells according to side scatter (xaxis) and green fluorescence (y-axis). (c) Revival and two subsequent transfer cultures of strain IMCC25003.

157 Fig. S3. Growth curves of strains IMCC25003 (a) and IMCC26103 (b) obtained from the revival

experiment of frozen glycerol stocks using culture medium (FAMV+CM+AA) supplemented with catalase.
 The triangle symbol represents growth in the medium amended with 10 U mL⁻¹ catalase, while the circle
 symbol represents growth in the medium without catalase.

Fig. S4. Genome sequencing using genomic DNA extracted from cultured and harvested cell pellets of the 163 acI strains. (a) Cell pellets obtained by centrifugation from 4-L cultures of IMCC25003 (upper) and 164 IMCC26103 (lower). Genomic DNA extracted from these cell pellets were used for genome sequencing. 165 (b) Coverage variation across the complete genome sequences of the acI strains. The two coverage plots 166 above red arrow were obtained from our previous study using whole genome amplification (WGA) (7). The 167 two coverage plots below the arrow were obtained from this study using large-scale cultures without WGA. 168 169 Coverage variation was calculated using a 25-bp window based on read mapping. Bar heights were normalized in each plot and the maximum coverages are indicated at the upper left corner of each plot. 170 171

172

173 Fig. S5. Increase in IMCC25003 *katG* expression with increasing concentration of H₂O₂. Cells of

174 IMCC25003 were treated with 3 different H_2O_2 concentrations (10, 50, and 100 μ M) for 30 min and total

175 RNA was used for the analysis of *katG* expression by qPCR. Expression level of *katG* in H₂O₂-treated

176 cultures was compared with that in the control cultures (no H₂O₂ treatment). FAMV+CM+AA was used as

177 the culture medium. Error bars indicate standard deviations (n = 3).

Fig. S6. Expression, purification, and determination of native molecular weight of recombinant 180 181 IMCC25003 KatG. (a) Expression of IMCC25003 KatG in E. coli analyzed by SDS-PAGE. The bold 182 arrow indicates a band of KatG, which is approximately 82.6 kDa. M, molecular weight size marker; control, before induction of expression; sup, supernatant; pellet, cell debris and membrane. Purified 183 IMCC25003 KatG bound to a Ni²⁺-nitrilotriacetic acid affinity column (b) and the purified protein through 184 a size exclusion superpose-12 column (c), confirmed by SDS-PAGE. M, molecular weight size marker; f.t., 185 186 unbound flow through fraction. Chromatograms (d) of protein-molecular-weight size markers and 187 IMCC25003 KatG, and the molecular-weight calibration curve (e) obtained from protein-molecular-weight size markers and IMCC25003 KatG. The chromatogram colored in red and the red dot on the calibration 188 189 curve represent IMCC25003 KatG.

192 Fig. S7. Catalase and peroxidase activities of purified IMCC25003 KatG and bovine catalase (KatE).

193 Bovine catalase [0.005 (0.01 U), 0.05 (0. 1 U), and 0.5 (1 U) μg] and IMCC25003 KatG (0.005, 0.05, 0.5,

- 194 1, 5, and 10 µg) were separated by 8% non-denaturing PAGE. The bold arrows indicate negatively stained
- 195 catalase activity and the narrow arrow indicates peroxidase activity stained by 3,3',5,5'-
- 196 tetramethylbenzidine.

Fig. S8. Kinetic curves of H_2O_2 decomposition by IMCC25003 KatG and bovine catalase. The curves of absorbance at 240 nm over time were generated using varying quantities of (a) bovine catalase (0–1.0 µg) and (b) IMCC25003 KatG (0–5.0 µg).

Fig. S9. Growth curves of strain IMCC25003 (a) and strain IMCC26103 (b) at different temperatures.

206 Supplementary Tables

207

Table S1. Media used in this study and their composition.

-				
Components of media		209 210		
Components (abbreviation)	Compound(s)	Final concentration		
Ammonium (N)	NH4Cl	10 µM ²¹²		
Phosphate (P)	KH ₂ PO ₄	10 µM		
Trace metals (TM)	FeCl ₃ ·6H ₂ O	117 nM		
	MnCl ₂ ·4H ₂ O	9 nM		
	ZnSO ₄ ·7H ₂ O	800 pM		
	CoCl ₂ ·6H ₂ O	500 pM		
	Na ₂ MoO ₄ ·2H ₂ O	300 pM		
	Na ₂ SeO ₃	1 nM		
	NiCl ₂ ·6H ₂ O	1 nM		
Vitamin mixture (V)	Thiamine·HCl	59 nM		
	Niacin	81 nM		
	Ca-Pantothenate	84 nM		
	Pyridoxine	59 nM		
	Biotin	409 pM		
	Folic acid	453 pM		
	Vitamin B12	70 pM		
	Myo-inositol	555 nM		
	p-Aminobenzoic Acid	7 nM		
Carbon mixture (CM)	Pyruvate	50 µM		
	D-Glucose	5 μΜ		
	N-Acetyl-D-glucosamine	5 μΜ		
	D-Ribose	5 μΜ		
	Methyl alcohol	5 μΜ		
20 proteinogenic amino acid mixture (AA)	Each amino acid	100 nM, each		
Media definition				
Media	Definition			
FAM	0.2 µm-filtered and autocl	aved freshwater		
	medium supplemented wit	th N, P, and TM		
FAMV	FAM supplemented with V			
FAMV+CM	FAMV supplemented with	n CM		
FAMV+AA	FAMV supplemented with	IAA		
FAMV+CM+AA	FAMV supplemented with	CM and AA		

Trial	Media composition	Additional substrate	Reference
1st attempt	FAMV		
	FAMV+CM		
	FAMV+AA	$0.5\times,1\times,5\times,$ and $10\times$ of CM	
	AFM ^a +V+CM+AA		
	FM ^b +V+CM+AA		
2nd attempt	FAMV+CM+AA	20 µM acetate	[(14)]
		20 µM oxaloacetate	[(6)]
		20 µM putrescine	[(6, 15)]
		20 μM glycerol	[(6)]
		20 μM xylose	[(15, 16)]
		1 mg L ⁻¹ proteose peptone No. 3	
		1 mg L ⁻¹ yeast extract	
3rd attempt	FAMV+CM+AA	1:20 diluted spent medium ^c	[(15, 17)], This study
4th attempt	FAMV+CM+AA	10 U mL ⁻¹ catalase	

Table S2. Trials to establish pure culture of strain IMCC25003.

²¹⁴ ^aAFM, Artificial freshwater medium (18). ^bFM, 0.1 µm-filtered but non-autoclaved freshwater medium.

²¹⁵ Spent medium, a spent medium of the genus *Limnohabitans* filtrated through 0.1 µm pore-size membrane

after cultivation of *Limnohabitans* sp. IMCC26003. For the media abbreviations, refer to Supplementary

Table S1.

Source	Molecular weight	Structure	Specific activity (Units mg ⁻¹)	<i>Km</i> (mM)	kcat (s ⁻¹)	$k \text{cat}/K \text{m} (\text{M}^{-1} \text{ s}^{-1})$	pI	Reference
IMCC25003 ^a	165,000	A2	179.3	11.7	9.05×10^2	8.01×10^4	7.6 ^b	This study
Archaeoglobus fulgidusª	NA	NA	5,280	3.8	7.77×10^3	2.04×10^6	5.6 ^b	[(19)]
Bacillus selenatarsenatis SF-1	165,000	A2	3,375	2.6	$1.15 imes 10^4$	4.41×10^{6}	6.0	[(20)]
Burkholderia pseudomalleiª	NA	NA	3,630	4.5	5.68×10^3	1.26×10^6	5.9 ^b	[(19)]
Escherichia coli K10	337,000	A4	1,486.5	3.9	$1.63 imes 10^4$	4.19×10^{6}	5.1 ^b	[(21)]
Escherichia coli O157:H7	NA	NA	NA	4.0	$1.40 imes 10^4$	$3.50 imes 10^6$	5.1 ^b	[(22)]
Geobacillus stearothermophilus ^a	NA	NA	3,120	4.4	1.40×10^3	3.18×10^{5}	5.2	[(23)]
Halobacterium salinarum	240,000	A4	43.2	3.7	NA	NA	3.8	[(24)]
Mycobacterium smegmatis	NA	NA	NA	1.4	2.38×10^3	$1.70 imes 10^6$	5.0 ^b	[(25)]
Mycobacterium tuberculosis ^a	175,000	A2	2,420	5.2	$1.01 imes 10^4$	$1.94 imes 10^6$	5.1	[(26)]
Rhodobacter capsulatus	236,000	A4	7,800	4.2	NA	NA	4.5	[(27)]
Rhodobacter capsulatus ^a	NA	NA	4,830	3.7	6.64×10^3	$1.79 imes 10^6$	5.1 ^b	[(19)]
Synechococcus elongatus PCC 6301 ^a	165,000	A2	1,491	4.8	$8.85 imes 10^3$	$1.84 imes 10^6$	4.6	[(28)]
Synechococcus elongatus PCC 6301	165,000	A2	NA	4.3	7.20×10^{3}	1.67×10^6	5.1 ^b	[(29)]
Synechococcus elongates PCC 7942 ^a	NA	NA	NA	4.2	2.60×10^4	$6.19 imes 10^6$	5.1 ^b	[(30)]
Synechocystis sp. PCC 6803 ^a	170,000	A2	5,420	4.9	3.50×10^3	7.14×10^2	5.4	[(31)]
Thermoascus aurantiacus	330,000	A4	NA	48.0	1.07×10^5	2.22×10^{6}	4.5	[(32)]
Thermus brockianus	178,000	A4	5,300	35.5	6.00×10^{3}	1.69×10^{5}	4.7	[(33)]
Bos taurus ^c	240,000	A4	1980.3	20.6	$9.05 imes 10^4$	8.01×10^4	5.4	This study

219 **Table S3.** Kinetic parameters of various catalase-peroxidases and bovine catalase.

^aBiochemical properties were determined using recombinant catalase-peroxidase. ^bTheoretical pI values were estimated based on amino acids sequences. ^cThe

221 monofunctional bovine catalase which was amended to culture media of IMCC25003 was used as an experimental positive control. NA, not available.

Tribe	Organism name	Genome ID	Isolation site	Complete	No. of Scaffolds	Genome size (bp)	Length of KatG (aa)
A1	Actinobacteria bacterium IMCC25003	2602042019ª	Lake Soyang	0	1	1,353,947	746
	actinobacterium SCGC AAA278-O22	2236661007ª	Lake Mendota	Х	43	1,138,490	Х
	actinobacterium SCGC AAA027-M14	2236661003ª	Lake Mendota	Х	22	822,296	725
	'Ca. Planktophila dulcis' MMS-IIA-65	CP016777 ^b	Lake Zurich	0	1	1,348,019	732
	'Ca. Planktophila dulcis' MMS-IA-53	CP016772 ^b	Lake Zurich	0	1	1,365,934	732
	'Ca. Planktophila dulcis' MMS-21-155	CP016770 ^b	Lake Zurich	0	1	1,361,776	732
	'Ca. Planktophila sulfonica' MMS-IA-56	CP016773 ^b	Lake Zurich	0	1	1,344,614	747
	'Ca. Planktophila versatilis' MMS-IIB-76	CP016778 ^b	Lake Zurich	0	1	1,325,420	733
	'Ca. Planktophila versatilis' MMS-IA-79	CP016774 ^b	Lake Zurich	0	1	1,331,009	733
	'Ca. Planktophila versatilis' MMS-IA-105	CP016775 ^b	Lake Zurich	0	1	1,326,591	733
	'Ca. Planktophila versatilis' MMS-IIB-142	CP016781 ^b	Lake Zurich	0	1	1,266,983	733
A2	'Ca. Planktophila limnetica' MMS-VB-114	CP016782 ^b	Lake Zurich	0	1	1,328,793	722
A4	Actinobacteria bacterium IMCC26103	2602042020ª	Lake Soyang	0	1	1,456,516	Х
	'Ca. Planktophila lacus' MMS-IIB-106	CP016780 ^b	Lake Zurich	0	1	1,384,812	721
	'Ca. Planktophila lacus' MMS-IIB-60	CP016783 ^b	Lake Zurich	0	1	1,410,107	721
	'Ca. Planktophila lacus' MMS-21-148	CP016769 ^b	Lake Zurich	0	1	1,460,061	721
A5	actinobacterium SCGC AAA044-O16	2606217200ª	NA	Х	17	1,313,698	718
	actinobacterium SCGC AAA028-G02	2606217191ª	NA	Х	18	1,231,401	718
A6	actinobacterium SCGC AAA028-E20	2602042080ª	NA	Х	19	727,714	Х
	actinobacterium SCGC AAA028-I14	2619618809ª	NA	Х	11	623,569	717
A7	Actinobacteria bacterium IMCC19121	2606217181ª	Lake Soyang	0	1	1,506,415	Х
	actinobacterium SCGC AAA044-N04	2236661005ª	Damariscotta Lake	Х	23	1,286,658	718
	actinobacterium SCGC AAA024-D14	2264265190ª	Sparkling Lake	Х	82	778,696	Х
	actinobacterium SCGC AAA023-J06	2236661001ª	Sparkling Lake	Х	98	695,943	Х
	'Ca. Planktophila vernalis' MMS-IIA-15	CP016776 ^b	Lake Zurich	0	1	1,364,004	718
B1	actinobacterium SCGC AAA027-L06	2505679121ª	Lake Mendota	Х	75	1,163,583	Х
	actinobacterium SCGC AAA027-J17	2236661002ª	Lake Mendota	Х	81	966,755	Х

Table S4. List of acI genomes used in this study and the presence or absence of *katG* gene.

	actinobacterium SCGC AAA028-A23	2236661004 ^a	Lake Mendota	Х	64	833,294	Х
	actinobacterium SCGC AAA023-D18	2236661009ª	Sparkling Lake	Х	67	753,259	Х
actinobacterium SCGC AB141-P03		2236876028ª	Lake Stechlin	Х	66	660,403	Х
	'Ca. Nanopelagicus limnes' MMS-21-122	CP016768 ^b	Lake Zurich	0	1	1,238,108	Х
	'Ca. Nanopelagicus hibericus' MMS-21-160	CP016771 ^b	Lake Zurich	0	1	1,223,088	Х
	'Ca. Nanopelagicus abundans' MMS-IIB-91	СР016779 ^ь	Lake Zurich	0	1	1,161,863	Х
B4	actinobacterium SCGC AAA044-D11	2619618811ª	NA	Х	18	1,095,756	719
C1	Actinobacteria bacterium IMCC26077	2602042021ª	Lake Soyang	0	1	1,551,612	Х

²²⁴ ^aIMG Genome ID (IMG Taxon ID). ^bGenBank accession number. NA, not available.

Fatty acid	IMCC25003	IMCC26103
Saturated fatty acids		
C10:0		0.46
C12:0	1.64	7.93
C14:0	18.22	7.85
C16:0	23.11	28.45
C17:0		1.05
C18:0	2.14	10.49
Unsaturated fatty acids		
C15:1 ω6 <i>c</i>	1.11	
C17:1 ω8 <i>c</i>	2.31	1.35
C18:1 ω9 <i>c</i>	2.10	25.80
summed feature 3 (16:1 ω 7 c /16:1 ω 6 c)	45.79	12.28
summed feature 5 (18:2 ω 6,9 <i>c</i> /18:0 ante)		0.99
summed feature 8 (18:1 w7c, 18:1 w6c)	3.58	3.36

Table S5. Fatty acids composition (%) of two acI strains.

228 **References**

- Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for
 prokaryotes. *Proc Natl Acad Sci USA* 102(7):2567-2572.
- 231 2. Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average
 232 nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of
- 233 prokaryotes. Int J Syst Evol Microbiol 64(Pt 2):346-351.
- Tripp HJ, et al. (2008) SAR11 marine bacteria require exogenous reduced sulphur for growth.
 Nature 452(7188):741-744.
- Carini P, Steindler L, Beszteri S, Giovannoni SJ (2013) Nutrient requirements for growth of the
 extreme oligotroph '*Candidatus* Pelagibacter ubique' HTCC1062 on a defined medium. *ISME J* 7(3):592-602.
- 5. Thomas PE, Ryan D, Levin W (1976) An improved staining procedure for the detection of the
 peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. *Anal Biochem* 75(1):168-176.
- 6. Ghylin TW, et al. (2014) Comparative single-cell genomics reveals potential ecological niches for
 the freshwater acl *Actinobacteria* lineage. *ISME J* 8(12):2503-2516.
- 7. Kang I, Kim S, Islam MR, Cho J-C (2017) The first complete genome sequences of the acl
- lineage, the most abundant freshwater Actinobacteria, obtained by whole-genome-amplification of
 dilution-to-extinction cultures. *Sci Rep* 7:42252.
- Neuenschwander SM, Ghai R, Pernthaler J, Salcher MM (2018) Microdiversification in genome streamlined ubiquitous freshwater *Actinobacteria*. *ISME J* 12(1):185-198.
- 9. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history
 of freshwater lake bacteria. *Microbiol Mol Biol Rev* 75(1):14-49.
- 251 10. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the
- quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome Res* 253 25(7):1043-1055
- Fawal N, et al. (2013) PeroxiBase: a database for large-scale evolutionary analysis of peroxidases.
 Nucleic Acids Res 41:D441-444.

- 256 12. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high
- 257 throughput. *Nucleic Acids Res* 32(5):1792-1797.
- Zamocky M, Gasselhuber B, Furtmuller PG, Obinger C (2012) Molecular evolution of hydrogen
 peroxide degrading enzymes. *Arch Biochem Biophys* 525(2):131-144.
- Buck U, Grossart H-P, Amann R, Pernthaler J (2009) Substrate incorporation patterns of
 bacterioplankton populations in stratified and mixed waters of a humic lake. *Environ Microbiol*
- 262 11(7):1854-1865.
- 263 15. Garcia SL, McMahon KD, Grossart H-P, Warnecke F (2014) Successful enrichment of the
 264 ubiquitous freshwater acl *Actinobacteria*. *Environ Microbiol Rep* 6(1):21-27.
- Garcia SL, et al. (2013) Metabolic potential of a single cell belonging to one of the most abundant
 lineages in freshwater bacterioplankton. *ISME J* 7(1):137-147.
- Jezbera J, Sharma AK, Brandt U, Doolittle WF, Hahn MW (2009) '*Candidatus* Planktophila
 limnetica', an actinobacterium representing one of the most numerically important taxa in
 freshwater bacterioplankton. *Int J Syst Evol Microbiol* 59(11):2864-2869.
- 18. Kim S, Kang I, Cho JC (2017) Genomic analysis of a freshwater actinobacterium, "*Candidatus*Limnosphaera aquatica" Strain IMCC26207, isolated from Lake Soyang. *J Microbiol Biotechnol*272 27(4):825-833.
- 273 19. Singh R, et al. (2008) Comparative study of catalase-peroxidases (KatGs). *Arch Biochem Biophys*274 471(2):207-214.
- 275 20. Gudelj M, et al. (2001) A catalase-peroxidase from a newly isolated thermoalkaliphilic *Bacillus* sp
 276 with potential for the treatment of textile bleaching effluents. *Extremophiles* 5(6):423-429.
- 277 21. Claiborne A, Fridovich I (1979) Purification of the o-dianisidine peroxidase from *Escherichia coli*
- B. Physicochemical characterization and analysis of its dual catalatic and peroxidatic activities. J
 Biol Chem 254(10):4245-4252.
- 280 22. Varnado CL, Hertwig KM, Thomas R, Roberts JK, Goodwin DC (2004) Properties of a novel
 281 periplasmic catalase-peroxidase from *Escherichia coli* O157 : H7. *Arch Biochem Biophys*282 421(1):166-174.

283	23.	Kobayashi C, et al. (1997) Thermal conversion from low- to high-activity forms of catalase I from
284		Bacillus stearothermophilus. J Biol Chem 272(37):23011-23016.
285	24.	Brownpeterson NJ, Salin ML (1993) Purification of a catalase-peroxidase from Halobacterium-
286		Halobium - characterization of some unique properties of the halophilic ezyme. J Bacteriol
287		175(13):4197-4202.
288	25.	Marcinkeviciene JA, Magliozzo RS, Blanchard JS (1995) Purification and characterization of the
289		Mycobacterium-smegmatis catalase-peroxidase involved in isoniazid activation. J Biol Chem
290		270(38):22290-22295.
291	26.	Johnsson K, Froland WA, Schultz PG (1997) Overexpression, purification, and characterization of
292		the catalase-peroxidase KatG from Mycobacterium tuberculosis. J Biol Chem 272(5):2834-2840.
293	27.	Hochman A, Shemesh A (1987) Purification and characterization of a catalase-peroxidase from
294		the photosynthetic bacterium Rhodopseudomonas capsulata. J Biol Chem 262(14):6871-6876.
295	28.	Engleder M, et al. (2000) Nucleotide sequence analysis, overexpression in Escherichia coli and
296		kinetic characterization of Anacystis nidulans catalase-peroxidase. Biochimie 82(3):211-219.
297	29.	Obinger C, Regelsberger G, Strasser G, Burner U, Peschek GA (1997) Purification and
298		characterization of a homodimeric catalase-peroxidase from the cyanobacterium Anacystis
299		nidulans. Biochem Biophys Res Commun 235(3):545-552.
300	30.	Mutsuda M, Ishikawa T, Takeda T, Shigeoka S (1996) The catalase-peroxidase of Synechococcus
301		PCC 7942: purification, nucleotide sequence analysis and expression in Escherichia coli. Biochem
302		J 316:251-257.
303	31.	Jakopitsch C, et al. (1999) Catalase-peroxidase from the cyanobacterium Synechocystis PCC 6803:
304		cloning, overexpression in Escherichia coli, and kinetic characterization. Biol Chem 380(9):1087-
305		1096.
306	32.	Wang HX, Tokusige Y, Shinoyama H, Fujii T, Urakami T (1998) Purification and characterization
307		of a thermostable catalase from culture broth of Thermoascus aurantiacus. J Ferment Bioeng
308		85(2):169-173.
309	33.	Thompson VS, Schaller KD, Apel WA (2003) Purification and characterization of a novel thermo-
310		alkali-stable catalase from Thermus brockianus. Biotechnol Prog 19(4):1292-1299.