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Materials and Methods 
 
Data manifest: all data used in this paper are from public databases  
 
TCGA 
RNAseq fastq files and DNA methylation raw data were downloaded from TCGA GDC. 
Samples are summarized in Table S2 (RNAseq) and Table S5 (DNA methylation) by cancer 
types. Tumor purity values were downloaded from NIH/NCI GDC PanCanAtlas Publications 
website: https://gdc.cancer.gov/about-data/publications/pancanatlas 
 
 
CGP (Genentech Cancer Genome Project) 
CGP RNAseq data had been previously deposited into EGA by prior publications (17). Samples 
in each cancer type are summarized in Table S2. 
 
 

Accession No. Project Name 
EGAS00001000334 Genentech Small Cell Lung Cancer (SCLC) Screen 
EGAS00001000288 Genentech Colon Cancer Screen 
EGAS00001000736 Exome-seq, RNA-Seq, SNP array profiling of gastric tumor samples and 

cell line 
EGAS00001000926 Study of non-clear cell renal cell carcinoma 

 
 
 



GBM cell line data  
Matched RNAseq, proteome and MHC-I peptidome data previously published by Shraibman et 
al. 2016 (39) on 3 glioblastoma (GBM) cell lines before and after decitabine treatment were 
analyzed.  
 
 
 
 
REdiscoverTE method 
 
REdiscoverTE uses the light weight-mapping method, Salmon (19), for repetitive element 
expression quantification. The method as applied quantifies expression for all REs included in 
the reference transcriptome. In this study downstream analysis focused on TE expression. 
 
Generating REdiscoverTE reference transcriptome. Salmon version 0.8.2 was used to 
generate quasi mapping index. The reference transcriptome includes:  
 

1. distinct RNA transcript sequences (n=98,029) from the GENCODE release 26 basic (20) 
2. RepeatMasker elements (n=5,099,056) from the standard chromosomes, excluding all 

polyA repetitive elements (Fig. S1A, Fig. S1B). (Smit AFA, Hubley R, Green P. 
RepeatMasker Open-3.0. http://www.repeatmasker.org. 1996-2010) 

3. distinct sequences representing GENCODE RE-containing introns (n=185,403) and 
excluding any regions overlapping with exons on either strand since we analyzed non-
strand-specific RNAseq.  

 
Two transcriptome indices were built, one without (index 1) and the other with (index 2) the 
inclusion of RE-containing introns. We showed with simulation significant performance 
improvement by index 2 over index 1 (Fig. S1E, Fig. S1F, Fig. S1G). As a result REdiscoverTE 
transcriptome includes the RE-containing introns listed above.  
 
 
Salmon quantification. Salmon version 0.8.2 was used to quantify RNA-seq data with 
adjustment for GC content bias and sequence specific bias options. REdiscoverTE reference 
transcriptome described above was used. Salmon produces quantification results in two ways: 
transcript-per- kilobase-million (TPM) and number of reads. We have chosen to use read counts 
for all downstream analysis based on benchmarking analysis detailed in Supplementary 
information.  
 
Post-Salmon quantification, RE and host gene transcripts were aggregated separately. Host 
isoforms were aggregated to the gene level according to ensembl gene ID. All aggregation and 
downstream analysis of the aggregated expression were performed using R (R Core Team 
(2017). R: A language and environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. URL https://www.R-project.org.) 
 
Aggregation of RE expression to the subfamily level. Due to the high degree of sequence 
homology among copies of REs from the same subfamily, Salmon quantification of read counts 



at individual REs were aggregated to the level of RE subfamily, family and class according to 
hierarchies defined by the human Repeatmasker for Hg38 (a.k.a. repName, repFamily, repClass, 
respectively) by summing the counts of all individual REs from a given subfamily/family/class 
(Fig. S1A).  
 
Defining genomic context of REs in relations to host genes. 
 
To distinguish RE expression by genomic context in relation to genes, we separately tallied RE 
counts by the genomic locations of individual REs into exonic, intronic and intergenic RE.  
 
To defined whether REs are exonic, intronic or intergenic, we downloaded the annotated human 
transcriptome from Gencode (20) Version 26 Basic GTF/GFF file 
(https://www.gencodegenes.org).  Gencode defines the following basic categories of features: 
gene, transcript, coding exon (CDS), exon, UTR.  We inferred intronic and intergenic regions 
from these features (Fig. S1B pie chart). Then simplified these categories of features into 3 
mutually exclusive regions: exons (union of all exons and UTRs), introns (union of intronic 
regions excluding any overlap with exons) and intergenic regions. The R package 
GenomicRanges (58) was used to perform range overlap operations.  Repeatmasker RE genomic 
ranges were overlapped with these simplified host gene features to define whether a given RE is 
exonic, intronic or intergenic. For REs overlapping multiple contexts (e.g. an RE that resides at 
an exon-intron boundary), their locations are assigned with the following priority: exon > 
intron > intergenic. For example, an RE residing at the exon-intron boundary is considered as an 
exonic RE.   
 

 
REdiscoverTE performance benchmarking  
 
RSEM simulation 
  
To benchmark the accuracy of REdiscoverTE, we carried out extensive RSEM (21) simulations 
to create fastq files where we have ground truth on expression levels (TPM) of all features in the 
transcriptome. To create realistic gene and RE expression levels we first used RSEM to learn 
sequence statistics from two TCGA RNA-Seq samples with different proportions of RE reads 
estimated by REdiscoverTE: one with 5.4% of reads derived from REs as estimated by 
REdiscoverTE (THCA, normal sample, TCGA-EL-A3ZS-11A-11R-A23N-07), and one with 
11.5% of reads derived from REs (LAML, tumor sample, TCGA-AB-2955-03A-01T-0734-13), 
then generated corresponding simulated fastq files based on learned models (Fig. S1C step 2, 
step 3) and two additional modifications described below. 
 
A main goal of the simulation is to evaluate Salmon’s ability to quantify gene expression 
stemming from highly repetitive and similar features. We considered the added complexity 
where some REs can overlap with host gene features that are also expressing mRNAs, e.g. host 
gene transcripts or retained introns. The following two modifications were made to the default 
RSEM simulation process to address these issues (also described in Fig. S1C): 
 



1) To evaluate Salmon’s ability to distinguish RE expression from overlapping host 
transcripts (Fig. 1A orange reads from RE #2 vs. blue reads from exon), we simulated RE 
expression at varying levels above the host gene expression. We chose to focus our 
simulations on those RE subfamilies that have copies residing in all three types of 
genomic regions with respect to genes: exonic, intronic, and intergenic regions. Out of 
15,440 RE subfamilies, there are 3,659 subfamilies contain at least one copy of RE in 
each of exonic, intronic, and intergenic regions. After exluding simples repeats, there 
were 1,135 subfamilies that satisfy this criteria (Fig. S1C Venn Diagram). We randomly 
chose 1,000 non-Simple Repeat subfamilies from these 3,659 to evaluate with simulation 
experiments (Fig. S1C workflow). If an RE overlapped with multiple isoforms or genes, 
for simplicity, we randomly chose one isoform to simulate for every RE residing within 
the transcript. In total, 1,969,915 REs from 1000 non-Simple Repeat subfamilies were 
simulated; 63,021 of them overlapped with genes.  
 

2) To evaluate Salmon’s ability to distinguish RE expression from retained introns (Fig. 1A 
orange reads from RE #3 vs. green reads from retained intron), two isoforms were 
simulated for genes with intronic REs: one with the RE-containing intron retained, and 
one without the intron.  

 
After RSEM learned statistical profiles from the two TCGA fastq files, and before generating 
simulated fastq files, we manually changed the TPM values in the isoforms.results output file 
from rsem-calculate-expression in order to generate more variation in intron retention levels and 
RE to RE-containing gene expression level ratio. Fig. 1D provides the final profiles of these 
simulations.   
 
Comparing REdiscoverTE to RepEnrich. RepEnrich (14) is a two-step repetitive elements 
quantification method: step1 -- alignment of RNA-seq reads to hg38 using Bowtie (22), step 2 -- 
applying RepEnrich script to reads uniquely mapped to repeatmasked regions and multi-mapped 
reads from step 1 using RepEnrich pre-defined repetitive pseudogenomes as reference. 
RepEnrich pseudogenomes are defined for 1000+ RE subfamilies (excluding simple repeats and 
low complexity repeats), each is a concatenation of all repetitive elements in the subfamily with 
additional flanking sequences and spacers.  
 
We benchmarked performance of REdiscoverTE against RepEnrich on RSEM simulated RNA-
seq data. We followed default workflow of RepEnrich. Performance of REdiscoverTE and 
RepEnrich were evaluated using the metric mean absolute relative difference (MARD) at the 
level of subfamily, where MARD is defined as in Salmon publication (19): 
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Here N is the total number of features, where features could be individual RE transcripts or 
aggregated features such as RE subfamily. 
 
 



Comparing REdiscoverTE quantification of 66 ERVs in TCGA RNAseq data with Rooney 
et al. Cell 2015 
 
To directly compare with ERV quantification results from Rooney et al. 2015 (15), we created a 
Salmon reference transcriptome that included 90k human transcripts and the same 124 sequences 
for the 66 ERVs analyzed by the authors (from Mayer et al. 2012 (59)). RNA-seq from 5,217 
TCGA samples (20 cancer types) were quantified by Salmon (Version 0.6.0). ERV read counts 
were normalized by total counts mapped to genes, similar to Rooney et al. where ERV 
expression was normalized by total counts of reads mapped to genes. Counts per million (CPM) 
of ERVs from Salmon quantification was then compared with cpm value published in Rooney et 
al. 2015 Supplementary table S5b (distribution of correlation values in Fig. S1K). The 
expression level for the three ERVs highlighted in Rooney et al. 2015 Fig 4A as ‘tumor-specific’ 
plotted for comparison (Fig. S1J).  
 
Quantification of TE Expression in RNA-Seq Data with REdiscoverTE 
 
RNA-Seq data processing. TruSeq adapters were trimmed by Cutadapt 
(http://cutadapt.readthedocs.io/en/stable/) from both TCGA and CGP. REdiscoverTE was run as 
described above for whole transcriptome expression quantification. 
 
Normalization of TE and gene expression. Following expression aggregation: isoform level to 
gene level, individual REs to RE subfamilies, two expression count matrices were created for 
each data set, one for gene expression, the other for RE expression. We chose to calibrate both 
expression matrices using total counts of gene expression, which we considered to be more 
stable across samples. Expression normalization was performed in R using the Bioconductor 
packages edgeR (26) using “RLE” method by function calcNormFactors. log2CPM is then 
calculated with prior count set to 5. After normalization, for the RE expression matrix, we 
focuses on the 1052 transposable element (TE) subfamilies for downstream analysis in this 
study.  
 
Differential expression analysis. To control for potential batch effect and patient-to-patient 
variation, only tumor and matched adjacent normal samples are used for differential expression 
analysis. Cancer types with fewer than 10 normal samples were excluded from this analysis; 13 
TCGA cancer types and 5 CGP cancer types satisfied this threshold. The R packages limma and 
voom (27, 28) were used for differential expression analysis using aggregated count matrices as 
input. Prior to differential expression analysis, two filters were applied to exclude genes or TEs 
with low expression, requiring (1) at least 10% of samples have counts greater than zero, and (2) 
a log2(CPM) threshold. The log2(CPM) threshold was determined independently for each 
indication based on visual inspection of the mean-variance trend (estimated by the voom function 
in limma) to ensure variance was monotonically decreasing for low mean expression. Benjamini-
Hochberg (BH) approach was used to control false discovery rate (FDR) within each indication 
(60). Differentially expressed genes/TEs were determined at the threshold of: abs(log2 fold 
change) > 1 and FDR < 0.05.   
 
Divergence of TEs. RepeatMasker divergence score in terms of basepair (bp) difference from 
consensus sequence in 1000bp was used as proxy of the age of a TE element. For each TE 



subfamily, we calculated the average divergence score across all the copies of TEs within the 
subfamily.  
 
Methylation analysis 
 
TCGA 450k array methylation data processing. Illumina 450k Infinium methylation arrays 
were processed using the "lumi" (61). Raw array data were background corrected (lumiB 
method) and variance stabilized and normalized (lumiT and lumiN methods). Beta values were 
calculated per CpG site by flooring intensity values at zero and then calculating  
 

𝐵𝑒𝑡𝑎 = 	
𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑	𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑	𝑑𝑒𝑛𝑠𝑖𝑡𝑦 + 𝑢𝑛𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑	𝑑𝑒𝑛𝑠𝑖𝑡𝑦 + 𝑎𝑙𝑝ℎ𝑎 

 
where alpha is a regularization parameter set at the default of 100 recommended 
by Illumina (62). M-values were transformed from Beta values by: 

𝑀 = 𝑙𝑜𝑔2(
𝐵𝑒𝑡𝑎

1 − 𝐵𝑒𝑡𝑎) 
 
Liftover of CpG sites in 450k array to hg38. Hg19 annotation of 450k probes was obtained 
using R package “IlluminaHumanMethylation450kanno.ilmn12.hg19” (Kasper Daniel Hansen 
(2016). IlluminaHumanMethylation450kanno.ilmn12.hg19: Annotation for Illumina's 450k 
methylation arrays. R package version 0.6.0.) Using the liftOver utility provided by UCSC 
genome browser, physical coordinates of 450K probes in hg19 annotation were lifted to hg38 
reference genome. 485,441 out of 485,512 CpGs were successfully converted to Hg38, 71 failed 
due to position removal in Hg38 assembly. 
 
Identification of differentially methylated cytosine. In order to identify differentially 
methylated cytosines (DMCs), M values of DNA methylation data were used to fit the linear 
regression model with tumor/normal status and patient ID as covariate using lmFit from the R 
package limma (27). To control for potential batch effect and patient-to-patient variation, only 
tumors (N = 237) with matched normal (N = 236) samples were included for analysis in 10 
TCGA cancer types (Table S5) that had both DNA methylation and RNA-seq data. 
 
DMCs were defined as CpGs with the average absolute beta value change (Dbeta) >=10% and 
FDR<0.05. DMCs are called demethylated if the average beta value in tumor is lower than 
normal samples, and methylated if the average beta value in tumor is higher than normal. 
Dbeta value for each CpG site is defined for tumor and matched normal sample pairs as: 

Dbeta = betatumor – betanormal 
 
Distribution of 450K CpGs in different genomic features: similar to RE expression analysis, 
CpGs were classified into exonic, intronic and intergenic CpGs according to the genomic 
features defined above. The genomic distribution of all 450K CpGs and CpGs overlapping with 
TEs were visualized in Fig. S3A.  In total, there were 70,004 CpGs located within TEs that 
overlapped with 59,739 individual elements from 992 TE subfamilies.   
 



Spatial profile of methylation around TEs were analyzed by extracting CpG sites near intergenic 
TEs.  CpGs located outside but nearby individual intergenic TE elements were binned into two 
categories for further analysis: those within 1kb of TEs and those within 10kb of TEs.  Due to 
the lack of functional annotation for all TE transcripts, the most 5’ bp of each individual TE as 
annotated by RepeatMasker was used as proxy for Transcription Start Site (TSS).  
 
For the 1kb methylation spatial analysis, all 450K Array CpG sites within 500bp +/- of TSS for 
each intergenic TE were extracted using the findOverlaps function in the R package 
GenomicRanges with strand information taken into account. This resulted in 90,950 TE-proximal 
CpG sites for 1,007 TE subfamilies.  
 
For these 1,007 TE subfamilies, CpG sites from a bigger, 10kb window: 5kb up- and down-
stream from the start and end coordinates of individual intergenic TEs, were extracted, resulting 
in 155,360 CpG sites. 
 
For spatial profile analysis (e.g. Fig. 3F, Fig. 3G) CpGs within TEs were represented using a 
proportional distance as follows: TEs from the same subfamily were length normalized to create 
proportional position within the TE, ranging from 0% to 100% that correspond to the start and 
end of TE.  
 
Correlation between DNA methylation and TE expression. Two types of correlation analyses 
were carried out, both using Pearson correlation on aggregated intergenic TE expression at the 
subfamily level and M values of CpG sites, chosen over beta to obtain higher statistical power. 
The first one uses the per-sample average M-values at all CpGs within 1kb of TEs (e.g. Fig. 3E, 
Fig. S3F column 3) the second one is performed at each CpG site around 5kb +/- of all 
intergenic elements in the TE subfamily, using M-values from all samples at the given CpG site 
(e.g. Fig. 3F, Fig. S3F columns 4 and 5).  FDR was obtained by adjusting p values for multiple 
testing (Benjamini & Hochberg) across the 1007 tests within each cancer type. Significant 
correlation was defined as FDR<0.05 and |cor|>=0.4.  
 
TE demethylation enrichment score. We defined methylation state as the ratio of number of 
demethylated vs. number of over-methylated DMC sites. Methylation state is 1 when there are 
equal number of demethylated and over-methylated DMCs, > 1 when there is bias in the 
direction of demethylation, < 1 when there is bias toward over-methylation.  
 
We then computed a TE demethylation enrichment score (Table S5) as the ratio of within-TE 
methylation state (using DMC CpG sites in intergenic TEs) to global methylation state (using all 
DMC sites). This enrichment score is 1 when the methylation state in TE is comparable to that of 
the global methylation state, > 1 when a higher proportion of TE DMCs are demethylated, < 1 
when a smaller proportion of TE DMCs are demethylated.  
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Association between gene signatures and TE expression 
Gene signatures and calculation of gene signature scores.  Twenty-four gene signatures 
associated with major cellular pathways related to cancer, DNA damage response (DDR) and 
immune response were selected from previous publications (Table S7). The R package 
multiGSEA (https://github.com/lianos/multiGSEA) was used to score gene signature expression 
based on singular value decomposition.   
 
Calculation of tumor cellularity scores using xCell. In order to estimate the immune content 
within tumor samples, we applied xCell (33), a recently developed gene signature-based 
approach for tissue cellularity de-convolution within RNA-seq data, to TCGA samples and 
obtained the cellularity enrichment scores for 64 cell types, including lymphoid and myeloid cell 
types (Fig. S4C). We further confirmed the accuracy of xCell estimations by examining the 
concordance between certain cell types (e.g. CD8+ T cells) and related gene signature scores 
(e.g. CD8+ effector T cells) computed with multiGSEA (Fig. S4C). In addition, for each sample, 
we defined total lymphoid content as the sum of 21 lymphoid cell scores: CD8+ T-cells, NK 
cells, CD4+ naive T-cells, B-cells, CD4+ T-cells, CD8+ Tem, Tregs, plasma cells, CD4+ Tcm, 
CD4+ Tem, memory B-cells, CD8+ Tcm, naive B-cells, CD4+ memory T-cells, pro B-cells, 
class- switched memory B-cells, Th2 cells, Th1 cells, CD8+ naive T-cells, NKT and Tgd cells. 
Total myeloid content was defined as the sum of 13 cell scores: monocytes, macrophages, DC, 
neutrophils, eosinophils, macrophages M1, macrophages M2, aDC, basophils, cDC, pDC, iDC, 
mast cells. 
 
Calculation of correlation between gene signature/xCell scores and TE expression adjusted 
by tumor purity.  For each cancer type, Spearman correlation coefficients between log2CPM 
expression of 1,052 TE subfamilies and 24 gene signature scores were computed using the R 
package for partial correlations ppcor (https://CRAN.R-project.org/package=ppcor), with tumor 
purity as a covariate. Benjamini-Hochberg approach was used to control false discovery rate 
(FDR) within each indication separately.  
 
In addition, Spearman correlation coefficients between 1,052 TEs and 64 xCell scores were 
computed using the same method. 
 
Lasso analysis to identify associations between gene signature and TE expression.  To 
identify top TE subfamilies associated with each of the 24 cellular pathways and gene signatures, 
we exploited Lasso regularized regression -- generalized linear model via penalized maximum 
likelihood using the R package glmnet (34). In order to account for variations of cellular content 
that existed between tumor samples, we included tumor purity as well as abundance of total 
lymphoid and myeloid content (xCell section above) as parameters in the lasso model.  To avoid 
any possible bias introduced by normal-tumor status, only tumor samples were used in the 
regression model. The following Full Lasso model was computed within each cancer type 
separately: 
 
Tumor gene signature score ~ TE1 + TE2 + … +TE1052  + tumor purity + lymphoid + myeloid 



 
where TE expression are in units of log2CPM. 
 
Ten-fold cross-validation was performed for each regression, lasso coefficients at one standard 
error of the minimum mean cross validation errors (lamda 1SE) were used.  Each Lasso fit 
yielded a sparse set of predictors – variables with non-zero coefficients, corresponding to TE 
subfamilies with significant contributions to the variability of a given gene signature. We then 
ranked all 1055 dependent variables (TEs and 3 covariates) by their average absolute coefficient 
values across cancer types to select the top 20 predictors associated with the gene signature of 
interest. To produce the Lasso rank coefficient heatmap (Fig. S4D), we indicated the rank of 
these top predictors by their absolute coefficient values within each cancer type. Dots 
corresponds to a coefficient of zero for a given cancer type (also shown in Table S8).  
Post Lasso regression, deviance ratio from the models (fraction of deviance explained) were used 
as R2 values for these models. 
 
 
Cellularity model. Relative contribution to gene signature variance from the 3 cellularity scores 
(purity, lymphoid and myeloid) was estimated from R2 values of the following linear regression 
(performed by the lm function in R) for each of the 24 gene signature scores: 
 

         Tumor gene signature scores ~ tumor purity + lymphoid + myeloid 
 
Top TE linear model. Building on the cellularity model, this linear model includes the 3 
cellularity scores as well as up to 6 top TE subfamilies with the highest non-zero lasso 
coefficient: 
 
Tumor gene signature scores ~ tumor purity + lymphoid + myeloid + TE1 + TE2 + … + TE6 
 
This model was skipped if all coefficients for TE subfamilies were zero in the corresponding 
Lasso model.  
 
As both cellularity and top TE linear models are based on linear regression, their R2 values can 
be directly compared for a given gene signature. 
 

top TE fractional variance contribution = R2_topTE_model - R2_cellularity_model 
 
 
TE Peptide Identification 

 
Mass spectrometry (MS) raw data files for the global proteome (unenriched peptides) and MHC-
bound peptidome (pan-MHCI enriched peptides) were obtained from PRIDE (PXD003790) and 
SysteMHCAtals (SYSMHC00007), respectively.  



To enable identification of TE-derived peptides in the GBM proteome and MHC-bound 
peptidome data, we collected nucleotide sequences at all individual loci for the 62 TE 
subfamilies that were significantly over-expressed at either the intergenic or intronic regions 
upon 5’aza treated condition, performed 6 frame translations (both forward and reverse 
direction), then fragmented the resulting amino acid sequences at all stop codons. This yielded 
~1.1M peptide fragments, ranging 7 to 1,321 amino acids in length.  The peptide fragments were 
combined with the human protein sequences in Uniprot (downloaded Jan 1st of 2017) and 
common contaminant proteins to create a database used for searching non-MHC enriched mass 
spectrometry data. TE-derived peptide fragments were further reduced into 4.6M 11mers 
generated with a moving window of 8 amino acid overlaps, with duplicates removed. This 11mer 
database was also combined with the human protein sequences in Uniprot and common 
contaminant to create a database used for searching MHC-enriched mass spectrometry data.  
Raw MS data was analyzed using PEAKS Studio (Bioinformatics Solutions Inc., v8.5) (63). In 
brief, raw MS data were refined and sequence tags were identified by a de novo search 
algorithm. Identified sequence tags were used in the assignment of peptide sequences to MS data 
through a database search. For all database searches the following parameters were used: 
precursor tolerance = 25 ppm, fragment ion tolerance = 0.02 Da, enzyme = none, variable 
modifications include deamidation [N or Q, 0.98 Da] and oxidation [M, 15.99 Da], and max 
number of variable mods = 3. Data were filtered to 1% FDR at the peptide level, but due to TE 
peptide fragments being represented as multiple “protein” entries within the database protein 
level FDR was not performed. For MHC-bound peptidome data a median of 3 peptide spectral 
matches (PSMs) were identified for non-TE peptides, due to this TE peptides were considered 
high confidence if they had been identified in ≥3 spectra.  
Additionally, we performed an identical search against a database that did not include the TE 
peptide 11-mers in order to determine if TE PSMs mapped to alternative sequences (Table S12). 
A total of 555 PSMs mapped to TE peptides when the 11-mer peptides were included in the 
database. Of these, 487 failed to match a peptide sequence at 1% FDR when TE peptide 11-mers 
were excluded from the database. Of the remaining 68 PSMs, 64 matched to Trembl, Uniprot 
entries which are short RNA transcript reads that likely originate from expressed TE peptides. 
The remaining 4 spectra matched to alternative proteins in Uniprot (3) or a decoy protein entry 
(1). If we consider these 4 spectra false observations we can estimate our experimental FDR to 
be ~1.4%.  
For further validation of TE peptide identification, we synthesized 15 of the 83 unique peptides 
and analyzed them by MS. All MS analyses were performed on an Orbitrap Fusion mass 
spectrometer (ThermoFisher Scientific, San Jose, CA) with peptides separated over a nano-LC 
column (100 µm I.D. packed to 25 cm with Waters M-Class BEH 1.7 µm packing material) by a 
gradient delivered by a Waters NanoAqcuity nano-LC. For each synthetic TE peptide, 250 fmol 
was injected and analyzed by MS utilizing various collision energies (HCD at 20, 25, 30, and 35 
NCE) in order to match fragmentation spectra of Shraibman et. al. Synthetic peptide MS data 
were analyzed in PEAKS in an identical manner to the MHC-bound peptidome data. Annotated 
spectra for the synthetic and experimental spectra were manually compared to validate peptide 
identifications. Through this process we were able to confirm 17 of 18 peptide spectra as visual 
matches, adding further confidence to TE peptide identifications.  
 



MHC Class I Peptide Exchange  
 
Recombinant HLA-A*03:01 MHCI was refolded in the presence of a conditional peptide ligand 
that contains a UV sensitive amino acid, as previously described (64). The resultant purified, 
stable complex was incubated in the presence of 100 fold molar excess of synthetic TE derived 
peptides of interest. HLA-A*03:01 was present at a concentration of 50 ug/ml (1.04 uM) in 25 
mM TRIS pH 8.0, 150 mM NaCl, 2mM EDTA, 5% DMSO. The peptide exchange reaction 
mixture was incubated for 25 min under a UV lamp set to 365 nm to induce cleavage of the UV 
sensitive amino acid 3-amino-3-(2-nitro)phenyl-propionic acid. Samples were then incubated at 
room temperature, overnight, to allow for peptide exchange to occur. Upon cleavage of the 
conditional peptide ligand, synthetic TE derived peptides with suitable properties (affinity, 
solubility) exchanged into the complex displacing any fragments of the cleaved conditional 
ligand.  
 
2D-LCMS Characterization of Peptide Exchange 
 
To determine successful exchange of TE derived peptides into HLA-A*03:01 complexes, a 2-
dimensional liquid chromatography mass spectrometry method was used. The first dimension LC 
method employed an analytical SEC column (Agilent AdvanceBio SEC 300Å, 2.7um, 4.6 x 15 
mm) to separate intact complex from excess peptide run at an isocratic flow of 0.7 ml/min in 25 
mM TRIS pH 8.0, 150 mM NaCl for 10 min. A sampling valve collected the entirety of the 
complex peak that eluted between 1.90 – 2.13 min in a volume of 160ul and injected it onto the 
second dimension reversed phase column (Agilent PLRP-S 1000 Å, 8um, 50 x 2.1 mm). The 
second dimension column was exposed to a gradient of 5-50% mobile phase B in 4.7 min at 0.55 
ml/min with the column heated to 80°C. Mobile phase A was 0.05% TFA. Mobile phase B was 
0.05% TFA in acetonitrile. The column eluent was sent to an Agilent 6224 TOF LCMS for mass 
spectrometry data acquisition.  
 
HLA-A*03:01 complex peak area (detected at 280 nm) in the first dimension and mass spec 
detection of the peptide in the second dimension are used to determine successful exchange. 
Successful exchange of a peptide into the complex after cleavage of the conditional ligand during 
the peptide exchange reaction stabilizes the complex and results in nearly complete recovery of 
the starting complex measured in the first dimension SEC analysis. The peptide that has 
exchanged into the complex can then be detected in the second dimension, where the complex is 
run under denaturing conditions with mass spectral analysis allowing for direct detection of the 
peptide of interest. Unsuccessful peptide exchange reactions result in destabilized complex after 
the cleavage of the conditional ligand when a peptide fails to bind to and stabilize the complex. 
This is measured as a reduction in A280 peak area of the complex on SEC and an absence of 
peptide in the second dimension. In some cases, such as for peptide RLAPRPASR, no reduction 
in peak area was observed, however the peptide was not detected by mass spectrometry. A small 
number of peptides, due to their properties, are not captured by the second dimension 
chromatography column and method. In these cases, the peak area recovery is enough to suggest 
successful exchange when the proper experimental controls are used.  
 

 
 



 
  



 

 



 

 



   



 



 
 



 

 



Fig. S1. Overview of the human repetitive genome and benchmarking REdiscoverTE  
 

A. Repeatmasker hierarchical classification (class, family and subfamilies) of human 
repetitive DNA. Repetitive elements (RE) can be categorized into transposable elements 
(TE, left) and non-transposable elements (right). Numbers to the right are total counts of 
subfamilies within each class. 
 

B. Abundance of repetitive elements in the human genome and their physical locations in 
relations to host genes defined in Gencode (v26 basic). Upper pie-chart: the content of 
RE in human genome according to the Human Repeatmasker (hg38). Lower pie-chart: 
the relative footprint of genomic features (CDs, UTRs, introns, noncoding genes) defined 
in the Gencode transcriptome. Regions outside Gencode features are considered 
intergenic.  Bar-plot: enrichment of RE DNA in different genomic context in terms of 
Gencode genomic features. Numerical score of 1 corresponds to no enrichment, <1 
corresponds to depletion, >1 corresponds to enrichment. 
 

C. REdiscoverTE benchmarking workflow: 1) Generate transcriptome for RSEM simulation; 
2) RSEM learns of expression pattern from real RNA-seq data; 3) RSEM simulates new 
RNA-seq fastq based on learned and adjusted statistics; 4) Salmon quantification of 
RSEM simulated fastq; 5) Evaluate Salmon’s performance. This workflow was carried 
out for two TCGA samples: one LAML sample and one THCA sample. TPM: transcript 
per kilobase million. Venn diagram on physical locations of RE DNA in relations to 
genes for all RE subfamilies except those that belong to the class of simple repeats. 1,135 
of these RE subfamilies have elements located in all 3 genomic regions (exon, intron, 
intergenic). 
 

D. Post-hoc profiling of RE-to-transcript abundance in simulated data. Left: distribution of 
exonic RE to transcript TPM fold change for transcripts containing REs.  Right: 
distribution of intron retention rate. Red: LAML sample. Blue: THCA sample. 
 

E. Accuracy of REdiscoverTE RE quantification: TPM vs. counts. Top: simulation based on 
a TCGA THCA sample. Bottom: simulation based on a TCGA LAML sample. Left two 
panels: simulated TPM vs. estimated TPM. Right two panels: simulated read counts vs. 
estimated read counts. Index #1: reference transcriptome without inclusion of introns. 
Index #2: reference transcriptome that includes all introns containing REs. Performance 
accuracy is measured in terms of Spearman correlation coefficient (r), mean relative 
difference (MRD), mean absolute relative difference (MARD). 
 

F. Accuracy of REdiscoverTE RE quantification at the individual element level.  Elements 
are categorized according to their genomic context in relations to genes into exonic, 
intronic and intergenic REs. 
 

G. Accuracy of REdiscoverTE RE quantification where counts have been aggregated to the 
subfamily level. 

 



H. Comparison of TE quantification by REdiscoverTE to RepEnrich. Each point is one 
subfamily. 
 

I. Compute time (in second) used by REdiscoverTE  vs. RepEnrich to quantify the same 
fastq files using the same computer and memory resources. 
 

J. REdiscoverTE quantification of expression of 3 HERVs in TCGA RNA-seq data 
(compare to Rooney et al. Cell 2015 Fig4A) 
 

K. Distribution of coefficients from Pearson correlation between REdiscoverTE and Rooney 
et al. Cell 2015 quantifications of 66 HERVs. 

 
  



 



 



 



 
Fig. S2. Characteristics of TE expression in cancer 
 

A. Fractions of TCGA and CGP RNAseq (both are poly-A preps) reads mapping to all 
features in the REdiscoverTE transcriptome (left to right): Gencode v26 basic transcripts, 
Repeatmasker TEs (across cancer types: median 1.1%, mean 1.3%), Repeatmasker REs 
(excluding TEs, rRNAs), Gencode RE-containing introns and rRNAs. The last column is 
the fraction of reads that remained unmapped.  

 
B. RE intergenic expression in TCGA tumor samples from distinct repeat classes.  

 
C. Genomic context of RE expression for top 7 non-rRNA repeat classes in Fig. S2B. All 

TCGA samples are used for this calculation. For each repeat class, the denominator is 
total number of reads mapped to that class.  

 
D. Difference in fractions of RNAseq reads mapped to Intergenic TEs in tumor samples 

compared to matched normal samples across 13 TCGA cancer types (each with at least 
10 normal sample). Error bars are standard errors of the mean. 
 

E. Same as Fig. S2D, except for the 5 CGP cancer types. Error bars are standard errors of 
the mean. 

 
F. Permutation analysis on the divergence of over-expressed TE subfamilies. Divergence of 

TE subfamilies is known to be inversely associated with age of TE. Top: 506 TEs over-
expressed in at least 1 cancer type. Bottom: 27 TEs over-expressed in 5 or more cancer 



types. Red lines: observed average divergence value of over-expressed TEs. Gray 
distributions: bootstrapped distributions of mean divergence value of a random sample of 
TE subfamilies (matching number of subfamilies, 1000x permutations).  
 

G. Example volcano plots of intergenic TE differential expression aggregated to the 
subfamily level performed on TCGA BLCA, 19 tumor and matched normal samples.  

 
H. Patterns of differential expression for 4 TE subfamilies consistently over-expressed 

across cancer types in both TCGA and CGP. Only tumor and normal sample pairs are 
included here. Red: tumor samples. Blue: matched normal samples. Asterisks indicate 
level of significance in differential expression analysis between tumor and matched 
normal: * abs(log2 fold change) > 1 & FDR<0.05, ** abs(log2 fold change) > 1 & 
FDR<0.01, *** abs(log2 fold change) > 1 & FDR<0.001 
 

I. Co-expression of three pairs of over-expressed TEs. Units in log2 CPM. Red: all tumor 
samples. Blue: available matched normal samples.  

  



 



 

 
Fig. S3. Association between TE expression and loss of DNA methylation in cancer 
 



A. Illumina 450K array coverage of CpG sites in relations to TE (by class) as well as to 
genes. Each set of 3 bars represent the fraction of all CpGs, either in its entirety 
(450K_CpGs) or overlapping with a particularly TE class (e.g. LINE) grouped by their 
physical location in relations to Gencode host genes (exon, intron and intergenic regions).    
 

B. Global distribution of beta values of all 450k CpGs for 10 TCGA cancer types with 
methylation data. Only matched tumor-normal samples are used. Red: tumor samples. 
Blue: matched normal samples. 
 

C. The extent of TE mRNA overexpression is strongly correlated with the extent of global 
CpG demethylation across cancer types.  
 

D. Distribution coefficients of Pearson correlation between intergenic TE expression 
(N=1007 subfamilies) with average CpG methylation (M-value averaged over 500bp+/- 
5’ bp of the corresponding TEs) using matched tumor-normal samples across 10 cancer 
types. Significance threshold: cor < abs(0.4) and BH FDR<0.05.  Left: pooled correlation 
coefficients for 10 TCGA cancer types. Median cor=-0.11.  There are 932 significant 
inverse correlations and 89 positive correlations across the 10 cancer types. Middle: 
correlation coefficients for 3 most de-methylated cancer types: BLCA, HNSC, LIHC. 
Red lines indicate significant correlations. Right: Across 10 cancer types there were 431 
unique TE subfamilies with significant inverse correlation between expression and 
methylation. Some TEs show inverse correlation in multiple cancer types. Histogram 
shows distribution on the recurrence of these inverse correlation.   
 

E. Examples of TE subfamilies with reduced-expression in tumor compared to matched 
normal and their CpG methylation status. Selection criteria: TE subfamilies showed 
significantly reduced expression in >=3 cancer types. Left: log2 FC values of tumor vs. 
normal differential expression of TEs (row) across indications (column). Middle: tumor - 
normal delta beta value at CpG 500bp+/- 5’bp of TE locations. Right: Correlation 
between intergenic TE expression and methylation M value at CpG 500bp +/- 5’bp of TE 
locations. 
 

F.   Examples from HNSC: expressions of 4 SVA subfamilies are associated with DNA 
methylation status. Blue: normal sample. Red: tumor samples.  Filled circle: tumor 
samples with matched normal. Open circle tumor samples without matched normal.  Grey 
shading: 95% confidence interval. Column 1: normal and tumor SVA intergenic 
expression. Column 2: normal and tumor CpG beta values in 500bp+/- around 5’bp of 
intergenic SVA. Column 3: correlation between SVA intergenic expression and 
methylation M value (500bp+/- 5’bp intergenic SVA).  Column 4: spatial correlation 
between intergenic SVA expression and CpG methylation M value around 5kb +/- SVAs.  
SVA gene body is shaded in blue.  Column 5: smoothed beta value in tumor and matched 
normal pairs in 5kb +/- region around SVA. Column 6: spatial distribution of 
differentially methylated cytosines (DMCs): demethylated CpG sites (green), over-
methylated CpG sites(magenta) and CpGs with no change (grey, dashed) around 5kb +/- 
SVAs.  

  



 



 



 



 



 



 
Fig. S4. Characteristics of tumor gene expression profile in relations to TE 
 

A. Distribution of tumor purity score for TCGA samples by cancer type 
 

B. Top panel and middle panels: total lymphoid and myeloid abundance in TCGA tumors, 
respectively, estimated based on xCell.  Total lymphoid score is the sum of xCell scores 
of CD8+ T-cells, NK cells, CD4+ naive T-cells, B-cells, CD4+ T-cells, CD8+ Tem, 
Tregs, plasma cells, CD4+ Tcm, CD4+ Tem, memory B-cells, CD8+ Tcm, naive B-cells, 
CD4+ memory T-cells, pro B-cells, class-switched memory B-cells, Th2 cells, Th1 cells, 
CD8+ naive T-cells, NKT and Tgd cells. Total myeloid score is the sum of xCell scores 
of monocytes, macrophages, DC, neutrophils, eosinophils, macrophages M1, 
macrophages M2, aDC, basophils, cDC, pDC, iDC, mast cells. Bottom panel: correlation 
between xCell  CD8+ T cell score and CD8+ Effector T cell geneset score estimated from 
multiGSEA. Each panel is one cancer type; each point is one sample. Samples with xCell 
score of 0 were omitted. 
 

C. R2 values from 3 regression models on 24 gene signatures in 25 cancer types. Each panel 
is one gene signature, each point is one cancer type. Red: R2 from cellularity linear model 
which includes tumor content, total lymphoid and myeloid scores as predictors. Blue: R2 
of Lasso model which includes 3 aforementioned cellularity parameters and expression 
level of all 1,052 TEs as predictors. Green: R2 from linear model taking top 6 TEs 
predicted by Lasso model and 3 cellularity parameters as predictors.  
 

D. Graphical overview of top hits from Lasso models of gene signature scores across 25 
TCGA cancer types. Only the top 6 variables predicting the gene signatures are included 
in the heatmaps. Top variables were selected based on rank order of the number of cancer 
types in which a given variable (e.g. a L1HS) had non-zero coefficients. Heatmap colors 
denote the value of the coefficient from Lasso model -- red and blue correspond to 
positive and negative coefficient values, respectively. Dots in the heatmap denote zero 
coefficients assigned by Lasso. Numbers in the heatmap indicate the rank of the absolute 
value of non-zero coefficients from the Lasso model for a given cancer type. Side bar 



colors indicate whether a variable is a TE subfamily (blue) or one of three cellularities 
(magenta).  
 

E. Heatmap showing association between MER75 expression and gene signatures as well as 
immune infiltrates estimated by xCell across 25 cancer types. MER75 expression is 
strongly associated with and DNA damage as well as cell cycle. Heatmap colors denote 
Spearman correlation coefficient. Differential expression status are denoted at the bottom. 
*** FDR<0.001, BH corrected. 

  
F. Distribution of coefficients from Spearman correlations between the expression of 1052 

TE subfamilies and gene signature scores across 25 TCGA cancer types. Left: pooled 
correlation coefficients from correlations with 8 immune related gene signatures (Type I 
IFN Response, Type II IFN Response, NFkB, TNFalpha, CD8 T Effector, Immune 
checkpoint, Antigen Processing Machinery, IL1b Response) 
Right: pooled correlation coefficients from correlations with 6 DNA damage related gene 
signatures (NHEJ, Homologous Recombination, Mismatch repair, Nucleotide excision 
repair, DNA damage repair, Fanconi anemia). Correlation was calculated using only 
tumor samples and controlled for tumor content. Red: significant and strong correlations. 
Significance threshold: abs(cor)>0.5 & FDR<0.05, BH corrected. Numbers indicate the 
number of significant correlations except those in parenthesis indicate number of unique 
TE subfamilies with significant correlations. 
 

G. Distribution of tumor DNA damage response (DDR) scores, adjusted for tumor purity 
scores. DDR scores are computed as sum of 6 DNA damage related gene signature 
scores: homologous recombination, NHEJ, DNA damage repair, Fanconi anemia, 
nucleotide excision repair and mismatch repair (Table S4). Adjusted total DDR is the 
intercept plus residual of linear regression of total DDR score on tumor purity score. 

 



 
 
Fig. S5. 5-aza-2’-deoxycytidine treatment of GBM cell lines induces TE expression  

 
A. Fractions of RNA-seq output (rRNA depletion prep) corresponding to reads mapped to 

Gencode genes, Repeatmasker TEs and unmapped reads. Error bars denote standard error 
over 12 samples. 

 
B. Fraction of RNA-seq reads mapped to intergenic, intronic and exonic TE elements for 

each of 5 TE classes. 
 

C. Volcano plot showing differential intronic expression of TE subfamilies, decitabine-
treated (Aza) vs. non-treated (NT). TE subfamilies are colored by class at the significance 
threshold of log2FC > 1 and adjusted p-value < 0.05 and labeled if log2FC>1.5 and 
adjust p-value < 0.01. 
 



D. Decitabine treatment results many cancer testis antigen. Aza vs. NT volcano plots 
showing differential expression of Gencode genes. Red: select cancer testis antigens. 

 


