Supplementary Information: Flux balance analysis predicts NADP phosphatase and NADH kinase are critical to balancing redox during xylose fermentation in Scheffersomyces stipitis

August 12, 2018

Contents

1 Integrated omics analysis 1
2 Review of other redox balancing mechanisms 3
2.1 Succinate bypass 3
2.2 Complex I bypass 4
2.3 Alternative oxidase 4
3 Cloning, enzyme expression, optimization, and characterization 4
4 Phylogenetic analysis of PHO3.2 and XYL1 homologs 8
5 Phenotypes of xylose-fermenting yeasts based on phylogeny and genome annotations 11
6 UTR1 amino acid alignment 12

1 Integrated omics analysis

The xylose fermenting transcriptome from several studies were compared to find common expression patterns (Jeffries et al., 2007; Jeffries and Van Vleet, 2009; Yuan et al., 2011; Wohlbach et al., 2011). The expression of the xylose reductase (XR)-xylitol dehydrogenase (XDH) pathway, sugar transporters, lignocellulose-related enzymes, pentose phosphate pathway and redox metabolism in S. stipitis is consistent with other native xylose fermenters in the CTG clade. Far more genes were upregulated than downregulated with xylose as a carbon source than glucose (Yuan et al., 2011).

Redox metabolism. Glucose 6-phosphate dehydrogenase (encoded by ZWF1) had increased expression in multiple transcriptome studies (Jeffries et al., 2007; Jeffries and Van Vleet, 2009; Yuan et al., 2011). NAD (H) kinase (encoded by UTR1) was upregulated during xylose fermentation (Yuan et al., 2011). This may lead to an increase in the NADP concentration, an increase in the NADPH concentration, or regeneration of NADPH flux depending on its enzyme kinetics. We created a S. stipitis Utr1p structure by modelling it
with human NAD kinase (3PFN) using Phyre2 (Kelley et al., 2015). We were unable to analyze how the CTG clade-specific conserved motifs may impact the binding of NAD or NADH since they lie outside of the conserved domain. The upregulation of $Z W F 1$ and UTR1 support an NADPH preferring XR, regardless of whether UTR1 encodes an NAD kinase or NADH kinase. PHO3.2 had a marginal change in transcript levels during xylose fermentation; its expression was confirmed via proteomics during xylose fermentation (Huang and Lefsrud, 2012).

Suboptimal growth. S. stipitis has been observed to have suboptimal growth during xylose fermentation when compared to glucose fermentation (Ligthelm et al., 1988). There are several possibilities given our flux simulations and a review of S. stipitis omics data: a drop in the ATP yield caused by regenerating NADPH from $\operatorname{NAD}(\mathrm{H})$ kinase than the oxidative pentose phosphate pathway, a futile cycle between phosphofructokinase and fructose-1 6-bisphosphatase-1, which are both expressed in transcriptomics and proteomics studies (Yuan et al., 2011; Huang and Lefsrud, 2012), a bypassed Complex I or interruption of the TCA cycle (Shi et al., 2002), and the accumulation of other polyols (Ligthelm et al., 1988; Su et al., 2015).

There was no downregulation of Complex I, despite some evidence it is not active during xylose fermentation (Shi et al., 2002; Yuan et al., 2011). Huang and Lefsrud (2012) has confirmed its expression by shotgun proteomics. Mitochondrial superoxide dismutase's expression was lower with xylose fermentation than glucose fermentation, which provides some indirect evidence that Complex or the electron transport chain is less relevant during xylose fermentation. Complex I and other electron transport chain complexes generate free radicals that must be scavenged by superoxide dismutase and other compounds. In contrast, the cytoplasmic superoxide dismutase, SOD2.1, had increased expression during xylose fermentation. Glyceraldehyde 3-phosphate dehydrogenase, encoded by TDH1 and TDH2, also have higher transcript levels under xylose fermentation than glucose, which indicates glycolysis is more relevant to xylose fermentation than the ETC.

Expression of trans-aconitate methyltransferase (TMT1) increased 9 fold with xylose fermentation, although its transcript levels were low (7.17 RPKM) (Yuan et al., 2011). Trans-aconitate is an inhibitor of aconitase (Saffran and Prado, 1949), so it is possible that Tmt1p is acting to reduce its inhibition in response to an interrupted TCA cycle or blocked Complex I (Cai et al., 2001).

Ribitol has a higher yield than other polyols during glucose and xylose fermentation with S. stipitis (Ligthelm et al., 1988; Su et al., 2015). A possible pathway for ribitol accumulation may involve ribulose 5phosphate reductase (PICST_45705) and ribitol kinase (PICST_86603), which were both upregulated during xylose fermentation (Yuan et al., 2011). This pathway would reoxidize NADH and regenerate ATP, rather than dephosphorylate ribitol 5-phosphate via a phosphatase. These genes could be deletion targets to reduce
ribitol yield in native xylose fermenters. Alternatively, our Pho3.2p assay has shown its substrate promiscuity may lead to polyol accumulation.

Other expression patterns. Interestingly, isocitrate lyase (ICL1) had increased expression with xylose, but reduced malate synthase (MLS1.2) expression with xylose. Recent characterization has shown the glyoxylate cycle to be active in batch and chemostat aerobic growth for S. stipitis (Papini et al., 2012). Huang and Lefsrud (2012) found evidence of an active glyoxylate cycle in xylose fermentation, with the expression of isocitrate lyase (ICL1), malate synthase (MLS1.1), and NADP-dependent isocitrate dehydrogenase (IDP2) throughout the 64-hour fermentation. The glyoxylate cycle is suppressed during glucose growth in S. cerevisiae (Zampar et al., 2013). It is possible that it is less active in xylose fermentation than glucose fermentation. Further experiments may yield more insight into the role of the glyoxylate cycle in Crabtree-negative yeasts, and xylose growth.

2 Review of other redox balancing mechanisms

2.1 Succinate bypass

The cytoplasmic succinate bypass in S. stipitis has been proposed to supply NADPH for XR (Jeffries et al., 2007; Jeffries and Van Vleet, 2009); this mechanism was based on the upregulation of GDH2 and UGA1 in microarrays. Jeffries et al. (2007) assumed Gdh2p assimilates NH_{4} with NADH, but characterization of GDH2 knockouts in S. stipitis found its role to be related to glutamate catabolism (Freese et al., 2011). Glutamate or other amino acids must accumulate for the succinate bypass to supply NADPH for XR, or another nitrogenous compound must be degraded to release NH_{4}. Furthermore, there would be excess NAD $(P) H$ regenerated from xylose to α-ketoglutarate. These shortcomings stress the need to evaluate transcriptomics with flux balance analysis.

$$
\begin{gather*}
\alpha-\text { ketoglutarate }+\mathrm{NADH}+\mathrm{H}^{+} \xrightarrow{\mathrm{Gdh}_{2} \mathrm{p}} \mathrm{~L}-\text { glutamate }+\mathrm{NAD}^{+} \tag{S1}\\
\mathrm{L} \text {-glutamate } \xrightarrow{\mathrm{Dce}_{1} \mathrm{p}} 4 \text {-aminobutyrate }+\mathrm{CO}_{2} \tag{S2}\\
\alpha-\text { ketoglutarate }+4 \text {-aminobutyrate } \xrightarrow{\mathrm{Uga}_{1} \mathrm{p}} \mathrm{~L} \text { - glutamate }+ \text { succinate semialdehyde } \tag{S3}\\
\text { succinate semialdehyde }+\mathrm{H}_{2} \mathrm{O}+\mathrm{NADP}^{+} \xrightarrow{\mathrm{Uga}_{2} \mathrm{p}} \tag{S4}\\
\text { succinate }+\mathrm{NADPH}+2 \mathrm{H}^{+}
\end{gather*}
$$

2.2 Complex I bypass

Complex I is bypassed during xylose fermentation in S. stipitis (Shi et al., 2002; Jeffries et al., 2007), yet no transcriptomics studies support downregulation of Complex I subunits. Complex I subunits have been detected via shotgun proteomics during xylose fermentation (Huang and Lefsrud, 2012), which indicates it is expressed and could be bypassed. An expressed but bypassed Complex I has also been observed in Cyberlindnera jadinii (Ohnishi, 1972). There is no indication that bypassing Complex I has a direct role in balancing redox cofactors during xylose fermentation.

External NADH dehydrogenase, encoded by NDE1, is expressed during xylose fermentation study (Huang and Lefsrud, 2012). NDE1 provides an alternative mechanism to reoxidize NADH to NAD in the cytoplasm, and it is not linked to proton translocation. These results could account for suboptimal growth seen in xylose fermentation if both proteins are expressed during xylose growth.

2.3 Alternative oxidase

Alternative oxidase has been postulated to balance redox cofactors by scavenging for oxygen when it is present in low oxygen concentration or at high cell densities (Jeppsson et al., 1995). In silico simulations show that alternative oxidase has no impact on xylitol yield regardless of the cofactor selectivity for XR; however, there is a reduction in the growth rate when Aox1p oxidizes ubiquinone in silico. Disruption of AOX1 led to an increase in ethanol in S. stipitis (Shi et al., 2002).

3 Cloning, enzyme expression, optimization, and characterization

Primer sequences used to clone PHO 3 and PHO 3.2 into $\mathrm{pPICZ} \alpha, \mathrm{B}$ for expression in Komagataella phaffi are listed in Table S1. We used K. phaffii as a host because we were unable to collect any soluble protein by expressing Pho3 and Pho3.2p in Escherichia coli; presumably glycosylation was required or the signal peptide impacted its expression. The N-terminal sequences of PHO 3 and PHO 3.2 were truncated to remove their native signal peptides, and tagged with the α-factor secretion signal peptide from S. cerevisiae at their N -terminus.

His-tag antibodies (results not shown) and the agar acid phosphatase assay were used to find K. phaffii clones with the highest expression of Pho3p and Pho3.2p (Figure S1) (Dorn, 1965). No phosphatase activity was initially detected in the supernatant of mutants expressing Pho3p and Pho3.2p after 24 hours of growth on methanol (Figure S2). Sonication treatment to the cells increased phosphatase activity in the supernatant of Pho3p and Pho3.2p (Figure S2). Pho3p and Pho3.2p were predicted to be 36 kDa without glycosylation,

Table S1: Primer sequences for PHO 3 and $\mathrm{PHO3.2}$ inserts into $\mathrm{pPICZ} \alpha, \mathrm{B}$ without their native signal peptides.

Primer	Sequence
PstI-PHO3 (mature) FR	GTT GTT CTG CAG TTA AAA CAA TTC TCT TGT CTA ACG AC
PHO3 (mature)-NotI RC	GTT GTT GCG GCC GCG CTG GAA AAC AAA GGT TGC A
EcoRI-PHO3.2 (mature) FR	GTT GTT GAA TTC TGA AGA CCA TCC TCT TGA CCA A
PHO3.2 (mature)-NotI RC	GTT GTT GCG GCC GCA GAG AAC AAT GGT TCC AAC A

but were actually 55 kDa with glycosylation (Figure S 3). The malachite green assay shows higher promiscuity with Pho3.2p than Pho3p (Figure S4).

Figure S1: Acid phosphatase screen as described by Dorn (1965). Three out 45 colonies did not have any detectable acid phosphatase activity.

Figure S2: Impact of purification method on phosphatase activity after 24 hours of growth on methanol. Sonication led to the highest activity of phosphatase in the supernatant.

Figure S3: PAAG showing purified proteins from wild-type, PHO3, and PHO3.2-expressing mutants in Komagataella phaffi. The Komagataella phaffii Adh2p contaminant is also shown in the gel.

Figure S4: Malachite green assay results for Pho3p and Pho3.2p (no replicates). Scale is \% change in absorbance after five minutes. Pho3.2p has broader activity than Pho3p.

4 Phylogenetic analysis of PHO3.2 and XYL1 homologs

Figure S5: Phylogenetic reconstruction of PHO3.2 (acid phosphatase) homologs in budding yeasts. PHO3.2 derived from a tandem duplication in a common ancestor of Suhomyces tanzawaensis, Scheffersomyces and Spathaspora species. The red leaves highlight the PHO3.2 paralogs. The purple leaves highlight an additional uncharacterized PHO3 or PHO3.2 paralog.

Figure S6: Synteny of the PHO 3 (blue) and PHO3.2 (red) loci in Suhomyces tanzawaensis, Scheffersomyces and Spathaspora species. A genomic inversion of PHO occured in an ancestor of Suhomyces tanzawaensis. PHO3 is less conserved in Scheffersomyces species than PHO3.2.

Figure S7: Phylogenetic reconstruction of XYL1 (xylose reductase) homologs in budding yeasts, Pezizomycotina fungi, and Saitoella complicata; the XYL1 ortholog appears to be absent in Basidiomycota (Correia et al., 2017; Mi et al., 2012). Red leaves highlights the XYL1.2 paralog, which has NAD (P)H-dependent xylose reductase activity. Pachysolen tannophilus has an independent duplication of XYL1 (Correia et al., 2017), which also led to NAD(P)H-dependent XR activity (Ditzelmüller et al., 1985).

Figure S8: Synteny of XYL1 (blue) and XYL1.2 (red) loci in Scheffersomyces and Spathaspora species. XYL1.2 originated from a tandem duplication of XYL1 upstream of trimethyllysine dioxygenase (FOG01414). XYL1 was subsequently lost in some Scheffersomyces species.

5 Phenotypes of xylose-fermenting yeasts based on phylogeny and genome annotations

The phenotypes of xylose-fermenting yeasts can be categorized by the products they accumulate under oxygen-limiting or anaerobic conditions, although there is no strict criteria defining each group:

- xylitol
- xylitol and ethanol
- ethanol
- xylitol, acetate, ethanol

Xylitol. This phenotype is observed during oxygen limitation with yeasts that possess NADPH-dependent XR, such as Debaromyces hansenii (Converti and Domínguez, 2001), Candida parapsilosis and Meyerozyma guilliermondii (Nolleau et al., 1995). Interestingly, one strain of Candida parapsilosis has an XR that uses NADH (Lee et al., 2003) but it has not been explored why this yeast does not have a cofactor imbalance during xylose fermentation (Nolleau et al., 1995). Minor amounts of ethanol can accumulate with these yeasts under some conditions.

Xylitol and Ethanol. Candida tropicalis, Candida tenuis, Scheffersomyces shehatae, and some novel species of Spathaspora all ferment xylose to xylitol and ethanol (Ligthelm et al., 1988; Wohlbach et al., 2011; Lopes et al., 2016). These yeasts have XR with varying selectivities of NADH and NADPH (Cadete et al., 2013). It is unclear why S. shehatae accumulates large amounts of xylitol (greater than 10\%), despite having the XYL1.2 and PHO3.2 orthologs. Spathaspora species with strictly NADPH-dependent XR have been observed to ferment xylose to ethanol but only during aerobic conditions (Cadete et al., 2013).

Ethanol. S. stipitis and Spathaspora passalidarum are the only known yeasts that accumulate minor amounts of polyols during xylose fermentation. They have NAD (P)H-dependent XR (Cadete et al., 2013; Veras et al., 2017) with the highest selectivities to NADH, and also possess PHO3.2 orthologs.

Xylitol, Ethanol, and Acetate. To our knowledge, this phenotype has only been observed in P. tannophilus; it may also be present in a recently sequenced relative Candida peltata. P. tannophilus exhibits significant polyol yield compared to S. stipitis and S. shehatae. The polyol yield results from an inability to reoxidize NADH. This has been attributed to an XR that is solely catalyzed by NADPH, a second XR that has a significantly higher activity with NADPH than NADH (Ditzelmüller et al., 1984a,b, 1985; Verduyn et al., 1985), and a XDH that has less favourable enzyme kinetics in converting xylitol to xylulose (Yang and Jeffries, 1990). NADPH regeneration is likely to be driven by NADP-dependent acetaldehyde dehydrogenase (ALD6.1) (Correia et al., 2017) in P. tannophilus. In contrast, CTG yeasts do not have ALD6.1 and likely use NADH kinase during oxygen limitation. Curiously, Jeffries (1983) found that P. tannophilus accumulated ethanol aerobically when grown with glucose and nitrate.

6 UTR1 amino acid alignment

Flux balance analysis predicts NADPase and NADH kinase are required to balance redox cofactors during xylose fermentation. We were unable to confirm S. stipitis Utr1p activity using Escherichia coli or K. phaffi as expression hosts. The protein alignment of the CTG clade and Saccharomycetaceae Utr1p sequences show the CTG clade has unique motifs at the N and C -termii.

UTR1 NAD(H) kinase protein alignment

conserved submotif in CTG clade conserved submotif in Saccharomycetaceae clade

	480490	500	510	520	530
S_stipitis	TQDLENLHIDNGAAEDDFD	INYSS	N	促	
D_hanseni	LDSHIN...NLSLAPDEFL	IDYTDE	DED	E	T
M_guilliermondii	NDDELGTADTEITGSEPSE	VEYDD	P NA		
C_albicans	ESNH.....EEPEITEDFD	DINYTN	STP	CA	
M_farinosa	DGAQHRGSRSSVPLDDDYD	INYSAY	L NS	S G F	N
C_tenuis	ESLSLNASITIDNDNADYD	INFSDE	SQY	LP S	P
C_parapsilosis	ENDNGEFKPEQNEDNEDFD	D INYSDQ	TSS	NSE	G G
C_orthopsilosis	ENDNGEDKPKENDDNDDFD	DINYSDQ	TSS	NS E	G G
C_dubliniensis	SSEQDEVNHEEHEITEDFD	DINYTD	STP	HVN	
C_tropicalis	DEESEPDITEDDEEDDEFD	DINFTD	STP	L S T	
C maltosa	LHISTEVSAPHSGEEEIFD	INFDG	SEE	GG	
T_delbrueckii	VIID KNK $\overline{K P P} \overline{K F R} \overline{L H D N A D}$	D DNDD	D D T	K S K	Q Q
E_gossypii	DKSASDPEEPAPTEQQPAD	S GSD S	L	RR	
K_lactis	LEDDQSDDYSTDSDSELNE				
K_marxianus	LEESTNTAASDSERDSNSE	ESDSDSD			
L_thermotolerans	PSDEEEEEGESDSESPSQF	FRPKAA	K		
Z_bailii	REDDEVLVVQAEDPAQASN	NMMHKA	GKP		
z_rouxii	EGDHREVVVLQAEDKDQAQ	QKMIEER	AEK	GAA	
C_glabrata	IEERKLSSSAFDMSSLKEA	AVKEEAK	EDE	KKT	
N_castelli	RKLEKQLSGEHLTDSSETE	EENSND	VAL		
S_cerevisiae	IRDKYSLEADATKENNNGS	SDDESDD	ACK	KP	
V_polyspora	LEVNEKIGDEKLDMDKIES	SLLDQA	F S D	. . .	

References

Raquel M Cadete, Monaliza A Melo, Jerri E Zilli, Marcos JS Vital, Adriane Mouro, Alice H Prompt, Fátima CO Gomes, Boris U Stambuk, Marc-André Lachance, and Carlos A Rosa. Spathaspora brasiliensis sp. nov., Spathaspora suhii sp. nov., Spathaspora roraimanensis sp. nov. and Spathaspora xylofermentans sp. nov., four novel D-xylose-fermenting yeast species from Brazilian Amazonian forest. Antonie van Leeuwenhoek, 103(2):421-431, 2013.

Hui Cai, Jane Strouse, Darren Dumlao, Michael E Jung, and Steven Clarke. Distinct reactions catalyzed by bacterial and yeast trans-aconitate methyltransferases. Biochemistry, 40(7):2210-2219, 2001.

Attilio Converti and José Manuel Domínguez. Influence of temperature and pH on xylitol production from xylose by Debaryomyces hansenii. Biotechnology and Bioengineering, 75(1):39-45, 2001.

Kevin Correia, Shi M. Yu, and Radhakrishnan Mahadevan. Reconstructing the evolution of metabolism in budding yeasts. bioRxiv, page 237974, 2017.

G Ditzelmüller, CP Kubicek, W Wöhrer, and M Röhr. Xylitol dehydrogenase from Pachysolen tannophilus. FEMS Microbiology Letters, 25(2-3):195-198, 1984a.

G Ditzelmüller, EM Kubicek-Pranz, M Röhr, and CP Kubicek. NADPH-specific and NADH-specific xylose reduction is catalyzed by two separate enzymes in Pachysolen tannophilus. Applied Microbiology and Biotechnology, 22(4):297-299, 1985.

Günther Ditzelmüller, Christian P Kubicek, Wilfried Wöhrer, and Max Röhr. Xylose metabolism in Pachysolen tannophilus: purification and properties of xylose reductase. Canadian journal of microbiology, 30(11):1330-1336, 1984b.

G Dorn. Genetic analysis of the phosphatases in Aspergillus nidulans. Genetics Research, 6(1):13-26, 1965.

Stefan Freese, Tanja Vogts, Falk Speer, Bernd Schäfer, Volkmar Passoth, and Ulrich Klinner. C-and Ncatabolic utilization of tricarboxylic acid cycle-related amino acids by Scheffersomyces stipitis and other yeasts. Yeast, 28(5):375-390, 2011.

Eric L Huang and Mark G Lefsrud. Temporal analysis of xylose fermentation by Scheffersomyces stipitis using shotgun proteomics. Journal of Industrial Microbiology \& Biotechnology, 39(10):1507-1514, 2012.

Thomas W Jeffries. Effects of nitrate on fermentation of xylose and glucose by Pachysolen tannophilus. Nature Biotechnology, 1(6):503-506, 1983.

Thomas W Jeffries and Jennifer R Headman Van Vleet. Pichia stipitis genomics, transcriptomics, and gene clusters. FEMS Yeast Research, 9(6):793-807, 2009.

Thomas W Jeffries, Igor V Grigoriev, Jane Grimwood, José M Laplaza, Andrea Aerts, Asaf Salamov, Jeremy Schmutz, Erika Lindquist, Paramvir Dehal, Harris Shapiro, et al. Genome sequence of the lignocellulosebioconverting and xylose-fermenting yeast Pichia stipitis. Nature Biotechnology, 25(3):319-326, 2007.

H Jeppsson, NJ Alexander, and B Hahn-Hagerdal. Existence of cyanide-insensitive respiration in the yeast Pichia stipitis and its possible influence on product formation during xylose utilization. Applied and Environmental Microbiology, 61(7):2596-2600, 1995.

Lawrence A Kelley, Stefans Mezulis, Christopher M Yates, Mark N Wass, and Michael JE Sternberg. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6):845, 2015.

Jung-Kul Lee, Bong-Seong Koo, and Sang-Yong Kim. Cloning and characterization of the xyll gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Applied and Environmental Microbiology, 69(10):6179-6188, 2003.

Magdalena E Ligthelm, Bernard A Prior, and James C du Preez. The oxygen requirements of yeasts for the fermentation of D-xylose and D-glucose to ethanol. Applied Microbiology and Biotechnology, 28(1):63-68, 1988.

Mariana R Lopes, Camila G Morais, Jacek Kominek, Raquel M Cadete, Marco A Soares, Ana Paula T Uetanabaro, César Fonseca, Marc-André Lachance, Chris Todd Hittinger, and Carlos A Rosa. Genomic analysis and D-xylose fermentation of three novel Spathaspora species: Spathaspora girioi sp. nov., Spathaspora hagerdaliae fa, sp. nov. and Spathaspora gorwiae fa, sp. nov. FEMS Yeast Research, 16(4):fow044, 2016.

Huaiyu Mi, Anushya Muruganujan, and Paul D Thomas. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Research, 41 (D1):D377-D386, 2012.

V Nolleau, L Preziosi-Belloy, and JM Navarro. The reduction of xylose to xylitol by Candida guilliermondii and Candida parapsilosis: incidence of oxygen and pH. Biotechnology Letters, 17(4):417-422, 1995.

Tomoko Ohnishi. Factors controlling the occurrence of site I phosphorylation in C. utilis mitochondria. FEBS Letters, 24(3):305-309, 1972.

Marta Papini, Intawat Nookaew, Mathias Uhlén, and Jens Nielsen. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae. Microbial Cell Factories, 11(1):1, 2012.

Murray Saffran and J Leal Prado. Inhibition of aconitase by trans-aconitate. Journal of Biological Chemistry, 180(30):1301-1309, 1949.

Nian-Qing Shi, Jose Cruz, Fred Sherman, and Thomas W Jeffries. SHAM-sensitive alternative respiration in the xylose-metabolizing yeast Pichia stipitis. Yeast, 19(14):1203-1220, 2002.

Yi-Kai Su, Laura B Willis, and Thomas W Jeffries. Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124. Biotechnology and Bioengineering, 112(3):457-469, 2015.

Henrique César Teixeira Veras, Nádia Skorupa Parachin, and João Ricardo Moreira Almeida. Comparative assessment of fermentative capacity of different xylose-consuming yeasts. Microbial Cell Factories, 16(1): 153, 2017.

Cornelis Verduyn, Johannes Frank Jzn, Johannes P van Dijken, and W Alexander Scheffers. Multiple forms of xylose reductase in Pachysolen tannophilus CBS 4044. FEMS Microbiology Letters, 30(3):313-317, 1985.

Dana J Wohlbach, Alan Kuo, Trey K Sato, Katlyn M Potts, Asaf A Salamov, Kurt M LaButti, Hui Sun, Alicia Clum, Jasmyn L Pangilinan, Erika A Lindquist, et al. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. Proceedings of the National Academy of Sciences, 108(32):1321213217, 2011.

Vina W Yang and Thomas W Jeffries. Purification and properties of xylitol dehydrogenase from the xylosefermenting yeast Candida shehatae. Applied Biochemistry and Biotechnology, 26(2):197-206, 1990.

Tiezheng Yuan, Yan Ren, Kun Meng, Yun Feng, Peilong Yang, Shaojing Wang, Pengjun Shi, Lei Wang, Daoxin Xie, and Bin Yao. RNA-Seq of the xylose-fermenting yeast Scheffersomyces stipitis cultivated in glucose or xylose. Applied Microbiology and Biotechnology, 92(6):1237-1249, 2011.

Guillermo G Zampar, Anne Kümmel, Jennifer Ewald, Stefan Jol, Bastian Niebel, Paola Picotti, Ruedi Aebersold, Uwe Sauer, Nicola Zamboni, and Matthias Heinemann. Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast. Molecular Systems Biology, 9(1):651, 2013.

